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• Page 109, line 12: 4min(λj , λk) (≥ 4/N) =⇒ 2min(λj , λk) (≥ 2/N)

• Page 113, line 12 from bottom (last paragraph of the proof of Theorem 4.18):
Let p be such that the optimal solutions to (A) with respect to p form a minimal
face of the feasible region of (A).

• Page 133, (6.2): ∆f(z, v, u) =⇒ ∆f(z; v, u)

• Page 139, Proposition 6.8 (2): Condition (6.26) follows from (6.27), and hence
(6.26) is redundant.

• Page 143, Theorem 6.13 (8) [Convolution of M-convex functions]
The proof here makes use of transformation by a network, but an alternative direct
proof can be found in:
K. Murota: On infimal convolution of M-convex functions, RIMS Kokyuroku, No.1371
(2004), 20–26, and METR 2004-12, Department of Mathematical Informatics, Uni-
versity of Tokyo, March 2004
http://www.keisu.t.u-tokyo.ac.jp/research/techrep/data/2004/METR04-12.pdf

• Page 151, Theorem 6.30, Proof of Claim 1:

The final step reads: “This shows (B-EXC+[R]) for B. Therefore, B is an M-
convex set.” Before we can argue in this way, we have to verify B ∩ZV = B, which
is possible.

• Page 152, Section 6.8: A characterization of gross substitutes property in terms
of an exchange property is also found in:
H. Reijnierse, A. van Gallekom, and J. A. M. Potters: Verifying gross substitutabil-
ity, Economic Theory, 20 (2002), 767–776.

• Page 172, Proof of Theorem 6.74:

“Theorem 6.4 can be strengthened to a statement that (M-EXC[Z]) and (M-EXCloc[Z])
are equivalent if dom f satisfies (Q-EXCw). (This can be shown by modifying the
proof of Claim 2 in the proof of Theorem 6.4.)”

The detail of the argument can be found in a memorandum of A. Shioura: Level
set characterization of M-convex functions (February 1998); see Claim 2 on page 6.

• Page 185, Theorem 7.14 [L-optimality criterion]
The proof here makes use of the optimality criterion for integrally convex functions,
but an alternative direct proof can be found in:
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K: Murota: A proof of the L-optimality criterion theorem, unpublished note, July
2004,
http://www.misojiro.t.u-tokyo.ac.jp/ murota/paper/loptimality04.pdf

• Page 219, Theorem 8.17 [M-convex intersection theorem]
The proof here makes use of the M-separation theorem, but an alternative direct
proof can be found in:
K. Murota: A proof of the M-convex intersection theorem, RIMS Kokyuroku,
No.1371 (2004), 13–19, and METR 2004-03, Department of Mathematical Infor-
matics, University of Tokyo, January 2004
http://www.keisu.t.u-tokyo.ac.jp/research/techrep/data/2004/METR04-03.pdf

• Page 305, Section 10.3.1:

A detailed analysis of the steepest descent algorithm for L-convex functions can be
found in:

K. Murota and A. Shioura: Exact bounds for steepest descent algorithms of L-
convex function minimization, Operations Research Letters, 42 (2014), 361–366.

• Page 365, [39]: P. G. Doyle and J. L. Snell: Random Walks and Electrical Net-
works, Mathematical Association of America, Washington DC, 1984.

• Page 376, [202]: D. M. Topkis, =⇒ D. M. Topkis:

Updates of bib-infor:

• [32] V. I. Danilov and G. A. Koshevoy: Discrete convexity and unimodularity, I,
Advances in Mathematics, 189 (2004), 301–324.

• [33] V. Danilov, G. Koshevoy, and C. Lang: Gross substitution, discrete convexity,
and submodularity, Discrete Applied Mathematics, 131 (2003), 283–298.

• [44] J. Edmonds: Submodular functions, matroids and certain polyhedra, in: R.
Guy, H. Hanani, N. Sauer, and J. Schönheim, eds., Combinatorial Structures and
Their Applications, Gordon and Breach, New York, 1970, 69–87. Also in: M.
Jünger, G. Reinelt, G. Rinaldi, eds., Combinatorial Optimization—Eureka, You
Shrink!, Lecture Notes in Computer Science, 2570, Springer-Verlag, Berlin, 2003,
11–26.

• [47] A. Eguchi and S. Fujishige: An extension of the Gale–Shapley stable matching
algorithm to a pair of M♮-concave functions, Discrete Mathematics and Systems
Science Research Report, No. 02-05, Division of Systems Science, Osaka University,
November 2002. (This is the final form; no journal paper exists.)

• [53] L. R. Ford, Jr., and D. R. Fulkerson: Flows in Networks, Princeton University
Press, Princeton, 1962.
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• [65] S. Fujishige: Submodular Functions and Optimization, Annals of Discrete
Mathematics, 47, North-Holland, Amsterdam, 1991; 2nd ed., Annals of Discrete
Mathematics, 58, Elsevier, 2005.
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Mathematics, 280 (2004), 13–27.
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modular systems, Japan Journal of Industrial and Applied Mathematics, 9 (1992),
369–382.

• [75] J. F. Geelen and S. Iwata: Matroid matching via mixed skew-symmetric ma-
trices, Combinatorica, 25 (2005), 187–215.

• [76] J. F. Geelen, S. Iwata, and K. Murota: The linear delta-matroid parity problem,
Journal of Combinatorial Theory (B), 88 (2003), 377–398.

• [100] S. Iwata: A faster scaling algorithm for minimizing submodular functions,
in: W. J. Cook and A. S. Schulz, eds., Integer Programming and Combinatorial
Optimization, Lecture Notes in Computer Science, 2337, Springer-Verlag, 2002,
1–8; SIAM Journal on Computing, 32 (2003), 833–840.

• [103] S. Iwata, S. T. McCormick, and M. Shigeno: Fast cycle canceling algorithms
for minimum cost submodular flow, Combinatorica, 23 (2003), 503–525.

• [115] B. Korte and J. Vygen: Combinatorial Optimization: Theory and Algorithms,
Springer-Verlag, Berlin, 2000; 2nd ed., 2001; 3rd ed., 2006; 4th ed., 2008; 5th ed.,
2012.

• [127] S. T. McCormick: Submodular Function Minimization, in: K. Aardal, G.
Nemhauser, and R. Weismantel, eds., Discrete Optimization, Handbooks in Opera-
tions Research and Management Science, Vol.12, Elsevier Science Publishers, Berlin,
2006, Chapter 7, 321–391.

• [132] S. Moriguchi and K. Murota: Capacity scaling algorithm for scalable M-
convex submodular flow problems, Optimization Methods and Software, 18 (2003),
207–218.

• [134] S. Moriguchi and A. Shioura: On Hochbaum’s proximity-scaling algorithm
for the general resource allocation problem, Mathematics of Operations Research,
29 (2004), 394–397.

• [148] K. Murota: On steepest descent algorithms for discrete convex functions,
SIAM Journal on Optimization, 14 (2003), 699–707.

• [155] K. Murota and A. Shioura: Quadratic M-convex and L-convex functions,
Advances in Applied Mathematics, 33 (2004), 318–341.
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• [156] should be changed to:
K. Murota and A. Shioura: Fundamental properties of M-convex and L-convex func-
tions in continuous variables, IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E87-A (2004), 1042–1052.

• [157] K. Murota and A. Shioura: Conjugacy relationship between M-convex and L-
convex functions in continuous variables, Mathematical Programming, 101 (2004),
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• [158] K. Murota and A. Shioura: Substitutes and complements in network flows
viewed as discrete convexity, Discrete Optimization, 2 (2005), 256–268.
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and their applications to economic equilibrium models with indivisibilities, Discrete
Applied Mathematics, 131 (2003), 495–512.

• [161] K. Murota and A. Tamura: Application of M-convex submodular flow problem
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Mathematical Programming, 99 (2004), 539–562.
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application to the resource allocation problem, Discrete Applied Mathematics, 134
(2003), 303–316.

• [197] A. Tamura: Coordinatewise domain scaling algorithm for M-convex function
minimization, in: W. J. Cook and A. S. Schulz, eds., Integer Programming and
Combinatorial Optimization, Lecture Notes in Computer Science, 2337, Springer-
Verlag, 2002, 21–35; Mathematical Programming, 102 (2005), 339–354.

• [198] A. Tamura: On convolution of L-convex functions, Optimization Methods and
Software, 18 (2003), 231–245.

• [208] J. Vygen: A note on Schrijver’s submodular function minimization algorithm,
Journal of Combinatorial Theory (B), 88 (2003), 399–402.
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Addition to Bibliography for 2nd Printing (soft cover)
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