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Abstract

Network synthesis problem is the problem of constructing a minimum cost net-
work satisfying a given flow-requirement. A classical result of Gomory and Hu is
that if the cost is uniform and the flow requirement is integer-valued, then there
exists a half-integral optimal solution. They also gave a simple algorithm to find a
half-integral optimal solution.

In this paper, we show that this half-integrality and the Gomory-Hu algorithm
can be extended to a class of fractional cut-covering problems defined by skew-
supermodular functions. Application to approximation algorithm is also given.

1 Introduction

Let KV be a complete undirected graph on node set V . We are given a nonnegative
integer-valued flow-requirement rij ∈ Z+ for each unordered pair ij of nodes. A non-
negative edge-capacity x : E(KV )→ R+ is said to be feasible if, for every node-pair ij,
the maximum value of an (i, j)-flow under the capacity x is at least rij . We are also
given a nonnegative edge-cost a : E(KV )→ R+. The network synthesis problem (NSP)
is the problem of finding a feasible edge-capacity of the minimum cost, where the cost
of edge-capacity x is defined as

∑
e∈E(KV ) a(e)x(e).

A classical result by Gomory and Hu [10] is that NSP admits a half-integral optimal
solution provided the edge-cost is uniform.

Theorem 1.1 ([10]). Suppose a(e) = 1 for e ∈ E(KV ). Then we have the following:

(1) The optimal value of NSP is equal to
1

2

∑
i∈V

max{rij | j ∈ V \ {i}}.

(2) There exists a half-integral optimal solution in NSP.

See [5, Chapter 4], [7, Section 7.2.3], and [21, Section 62.3]. Gomory and Hu [10]
presented the following simple algorithm to find a half-integral optimal solution, where
1Y denotes the incidence vector of a set Y :

1. Define an edge-weight r on KV by r(ij) := rij .
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2. Compute a maximum weight spanning tree T of KV with respect to r. This tree
is called a dominant requirement tree.

3. Restrict r to E(T ). Decompose r into r =
∑

F∈G σ(F )1E(F ) for a family G of
subtrees in T and a positive integral weight σ on G such that

(∗) for F, F ′ ∈ G, one of F, F ′ is a subgraph of the other, or F and F ′ are vertex-
disjoint.

4. For F ∈ G, take a cycle CF (in KV ) of vertices V (F ).

5. Define x : E(KV )→ R+ by

x :=
∑

F∈G:|V (F )|=2

σ(F )1E(CF ) +
1

2

∑
F∈G:|V (F )|>2

σ(F )1E(CF ).

Then x is an optimal solution of NSP with unit edge-cost.

The running time of this algorithm is O(n2); see [16, Chapter 12]. For general edge-
costs, this half-integrality fails, and, in subsequent paper [11], Gomory and Hu presented
a practically efficient algorithm for NSP by the column generation method applied to an
LP-formulation of an exponential size (though NSP has an LP-formulation of a polyno-
mial size; see [21, p. 1054]).

Let us introduce a well-studied class of exponential-size linear problems capturing
NSP. Let f : 2V → Z+ be a symmetric nonnegative integer-valued set function on V
satisfying f(∅) = f(V ) = 0, where a set function f is called symmetric if it satisfies

(1.1) f(X) = f(V \X) (X ⊆ V ).

For X ⊆ V , let δX denote the set of edges in KV connecting X and V \ X. Let
Cover(f) denote the set of nonnegative edge-capacities x : E(KV )→ R+ satisfying the
cut-covering constraint

∑
e∈δX x(e) ≥ f(X) for each X ⊆ V . Namely,

(1.2) Cover(f) :=

{
x ∈ R

E(KV )
+

∣∣∣ ∑
e∈δX

x(e) ≥ f(X) (X ⊆ V )

}
.

As above, we are given an edge-cost a : E(KV )→ R+. Consider the following minimum-
cost fractional cut-covering problem:

NSP[f ]: Min.
∑

e∈E(KV )

a(e)x(e) s.t. x ∈ Cover(f).

A number of combinatorial optimization problem can be formulated in this way (see the
next section). In particular, NSP is a special case of NSP[f ]. Indeed, for flow-requirement
rij , define R by

(1.3) R(X) := max{rij | i ∈ X 63 j} (∅ 6= X ⊂ V ),

and R(∅) = R(V ) = 0. By the max-flow min-cut theorem, NSP[R] coincides with NSP.
Our main result is about a half-integrality property of NSP[f ] for a special skew-

supermodular function f and a special edge-cost a, extending Theorem 1.1. Recall that
a symmetric set function f is said to be skew-supermodular if it satisfies

(1.4) f(X) + f(Y ) ≤ max{f(X ∩ Y ) + f(X ∪ Y ), f(X \ Y ) + f(Y \X)} (X,Y ⊆ V ).
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The skew-supermodularity has played important roles in optimizations over Cover(f);
see the next section. Observe that the inequality (1.4) for a disjoint pair is trivial. We
introduce a new property imposed on disjoint pairs. A skew-supermodular function f is
said to be normal if it satisfies

(1.5) f(X) + f(Y )− f(X ∪ Y ) ≥ 0 (X,Y ⊆ V : X ∩ Y = ∅),

and is said to be evenly-normal if it satisfies

(1.6) f(X) + f(Y )− f(X ∪ Y ) ∈ 2Z+ (X,Y ⊆ V : X ∩ Y = ∅).

Next we consider special edge-costs. An edge-cost a is called a tree metric if a is
represented by the distances between a subset of vertices in a weighted tree. It is well-
known that a is a tree metric if and only if there exists a pair (F , l) of a cross-free
family F ⊆ 2V and a nonnegative weight l on F such that a =

∑
X∈F l(X)1δX ; see [3].

Recall that a family F ⊆ 2V is said to be cross-free if for every X,Y ∈ F one of X ∩ Y ,
V \ (X ∪ Y ), X \ Y , and Y \X is emtpy. The main result of this paper is the following.

Theorem 1.2. Suppose that f is evenly-normal skew-supermodular and a is a tree metric
represented as a =

∑
X∈F l(X)1δX for a cross-free family F and a nonnegative weight

l : F → R+. Then we have the following:

(1) The optimal value of NSP[f ] is equal to
∑

X∈F l(X)f(X).

(2) There exists an integral optimal solution in NSP[f ].

Furthermore there exists an O(nθ+n2) algorithm to find an integral optimal solution in
NSP[f ], where n := |V | and θ is the running time of evaluating f .

This theorem includes the half-integrality for NSP[f ] for a normal skew-supermodular
function f . One can see this fact from: (1) if f is normal skew-supermodular, then 2f
is evenly-normal skew-supermodular, and (2) if x is optimal to NSP[2f ], then x/2 is
optimal to NSP[f ]. Also Theorem 1.2 includes Theorem 1.1. Indeed, it is easy to see
that R is normal skew-supermodular (the skew-supermodularity of R is well-known [7,
Lemma 8.1.9]). Since the unit cost is represented as

∑
i∈V (1/2)1δ{i}, we can take {{i} |

i ∈ V } as F , with l({i}) := 1/2 (i ∈ V ). Applying Theorem 1.2 to NSP[2R], we obtain
Theorem 1.1. Note that R is evaluated in O(n) time; R(X) is equal to max{rij | ij ∈
E(T ), i ∈ X 63 j} for a dominant requirement tree T . Therefore the running time of our
algorithm is O(n2); our algorithm in fact generalizes the Gomory-Hu algorithm. Also
there are many O(n2) algorithms to determine whether a is a tree metric and to obtain
an expression a =

∑
X∈F l(X)1δX ; Neighbor-Joining [20] is a popular method.

The rest of this paper is organized as follows. In the next section (Section 2), we
discuss the relevance to previous works on skew-supermodular survivable network design.
We also present applications of Theorem 1.2 to approximation algorithms, though our
original motivation was to understand the half-integrality property and the Gomory-Hu
algorithm of NSP from a set-function property of f . In Section 3, we give a proof of
Theorem 1.2.

2 Related work and application

Related work. Integer linear optimization over Cover(f) with capacity bound con-
straint l ≤ x ≤ u, denoted by SND[f ; l, u], is a general form of the survivable network
design problem, and can formulate various combinatorial optimization problems; see [17,
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Chapter 20] and references therein. The natural LP-relaxation of SND[f ; l, u] is denoted
by SND∗[f ; l, u]. In particular SND∗[f ; 0,+∞] is equal to NSP[f ]. The integer network
synthesis SND[f ; 0,+∞] is denoted by INSP[f ].

Let us mention examples as well as relevances to our result. For T ⊆ V with |T |
even, define a set function fT by fT (X) := 1 for X ⊆ V with |X ∩T | odd and fT (X) :=
0 for others. Then INSP[fT ] is the minimum-cost T -join problem (with nonnegative
costs). The Edmonds-Johnson theorem [12] says that the LP-relaxation NSP[fT ] is
exact. Namely the integrality holds for NSP[fT ] with every cost function a. This set
function fT is evenly-normal skew-supermodular. Our theorem asserts the integrality
only for tree-metric edge-costs, and that an optimal T -join can be greedily found in this
case.

For a positive integer k > 0, define a normal skew-supermodular function fk by
fk(X) := k (∅ 6= X 6= V ). If k is even, then fk is evenly-normal. Then INSP[fk] is the
minimum k-edge-connected subgraph problem. In particular, INSP[f2] with the degree
constraint is nothing but the traveling salesman problem. Suppose that a is a metric.
Then NSP[f2] is equivalent to the subtour elimination LP-relaxation of TSP; see [25,
23.12]. Suppose further that a is a tree metric. TSP on a tree is quite easy. An optimal
tour is a tour which traces each edge in the tree (at most) twice. This tour in fact
coincides with our integral optimal solution in Theorem 1.2.

Consider the case f = R for connectivity requirement {rij} (see (1.3)). Then
SND[R; l,+∞] is the connectivity augmentation problem. Frank [6] gave a polynomial
time algorithm to SND[R; l,+∞] for node-induced edge-costs. An edge-cost a is called
node-induced if there is b : V → R+with

a(ij) = b(i) + b(j) (i, j ∈ V ).

As a corollary, he proved the half-integrality of SND∗[R; l,+∞] for node-induced edge-
costs. Actually Frank’s argument works for a proper function [17, Definition 20.17],
which is a symmetric set function f satisfying

(2.1) max{f(X), f(Y )} ≥ f(X ∪ Y ) (X,Y ⊆ V : X ∩ Y = ∅).

See [2] for details. Notice that R is proper. The condition (2.1) is stronger than the
normality condition (1.5), and is stronger than the skew-supermodularity (1.4); see [17,
Proposition 20.18]. Observe that a node-induced cost function is a tree metric corre-
sponding to a star. So our result extends Frank’s half-integrality result in the case of
l = 0. Note that Frank’s argument is based on the edge-splitting technique, and does
not explain the simplicity of the Gomory-Hu algorithm. Note also that our theorem is
not applicable to SND∗[R; l,+∞] (since the negative of cut function (X 7→

∑
e∈δX l(e))

is not normal in general).
In the study of hypergraph connectivity augmentation, Szigeti [23] showed that for

an arbitrary skew-supermodular function f there is a half-integral optimal solution in
NSP[f ] with uniform-cost. His proof is also based on the edge-splitting. We do not
know how to find this half-integral solution in polynomial time, since the edge-splitting
approach needs to check whether a given x ∈ RE(KV ) belongs to Cover(f); see the
argument below.

Approximation algorithm of SND[f ; l, u] for proper/skew-supermodular functions f
has also been extensively studied; see [25, Chapters 22, 23] and [17, Section 20.3].
The integer network synthesis INSP[R] is NP-hard for general edge-cost. The skew-
supermodular INSP[f ] is NP-hard even if the edge-cost is uniform, since it includes an
NP-hard subclass of the NA-connectivity augmentation problem [18]; see [14, Lemma
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1.1]. There are two major approximation algorithms for SND[f ; l, u]: Jain’s 2-approximation
algorithm [15] and the primal-dual 2H(fmax)-approximation algorithm [9], where fmax :=
maxX⊆V f(X) and H(k) := 1 + 1/2 + · · · + 1/k. The half-integrality of SND∗[f ; l, u]
would yield a 2-approximation algorithm for SND[f ; l, u]. However SND∗[f ; l, u] does
not have the half-integrality in general; see [25, Lemma 23.2] and [17, p. 544–545].
In [15], Jain discovered a weaker property that every basic solution x of SND∗[f ; l, u]
has an edge e with x(e) ≥ 1/2. Based on this property, he devised a 2-approximation
algorithm for SND[f ; l, u], provided a separation oracle of Cover(f) or a polynomial time
algorithm solving LP-relaxation SND∗[f ; l, u] is available. The primal-dual approxima-
tion algorithm also needs a feasibility-checking oracle of Cover(f), an oracle of checking
whether a given x belongs to Cover(f). Another notable result is a 7/4-approximation
algorithm by Nutov [19] for SND[f ; l,+∞] with uniform edge-cost. His algorithm also
needs a feasibility-checking oracle of Cover(f). For a proper function f (given by an
oracle), there is an efficient separation algorithm for Cover(f) [17, Theorem 20.20], and
SND∗[f ; l, u] can be solved in polynomial time by the ellipsoid method. In addition,
if f = R, then the feasibility-check of Cover(R) can be done by any max-flow min-cut
algorithm, and SND∗[R; l, u] has a polynomial-size LP formulation, which can be solved
in polynomial time by the interior point method.

For a general skew-supermodular function f (given by an oracle), however, no effi-
cient feasibility-checking/separation algorithm for Cover(f) is known; see [17, p. 534].
This problem is reduced to the problem of maximizing a skew-supermodular function,
which is also not known to be (oracle-)tractable; see EGRES Open [13]. Even if the nor-
mality condition (1.5) is imposed, we still do not know whether Cover(f) has an efficient
separation algorithm, and we do not know whether NSP[f ] is solvable in polynomial
time. From this point of view, our result might be interesting since it gives a new class
of oracle-tractable NSP[f ].

Application to approximation algorithm. As is well-known, the half-integrality
leads to a 2-approximation algorithm; see [25]. For a half-integral optimal solution x
of NSP[f ], by rounding up x(e) to dx(e)e, we obtain a feasible solution dxe of INSP[f ],
which is a 2-approximate solution of INSP[f ].

Theorem 2.1. Suppose that f is a normal skew-supermodular function given by an
evaluation oracle. There is a 2-approximation algorithm for INSP[f ] with tree-metric
costs.

An interesting point is that this algorithm does not require any feasibility-checking
oracle of Cover(f). Furthermore, by combining Theorem 1.2 with a standard argument of
Bartal’s probabilistic embedding [1] (see [24, Section 8.5, 8.6]), we obtain a randomized
O(log n)-approximation algorithm for INSP[f ] with general cost as follows. We can
assume that edge-cost a is a metric, i.e., it satisfies the triangle inequalities a(ij)+a(jk) ≥
a(ik) (i, j, k ∈ V ) (see the proof of [25, Theorem 3.2]), and there is no edge e with
a(e) = 0 (otherwise, contract all edges e with a(e) = 0). It is shown by [4] that there
exists a randomized O(n2) algorithm to find a tree metric τ with a(e) ≤ τ(e) and
E[τ(e)] ≤ O(log n)a(e) (e ∈ E(KV )), where E[X] is the expected value of a random
variable X. More precisely, there is an O(n2) algorithm to sample a tree metric from
the space T of tree metrics τ dominating a with respect to a probability measure µ
on T satisfying E[τ(e)] =

∫
τ∈T τ(e)dµ ≤ O(log n)a(e) (e ∈ E(KV )). Let xτ be a half-

integral optimal solution x of NSP[f ] for tree-metric cost τ (obtained by the algorithm
in Theorem 1.2). The rounding solution dxτe is a 2-approximate solution of INSP[f ]
with cost τ (by Theorem 2.1), and has the expected objective value at most O(log n)
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times the optimal value of INSP[f ] with cost a, since

E

[∑
e

a(e)dxτ (e)e

]
=

∫
τ∈T

∑
e

a(e)dxτ (e)edµ ≤
∫
τ∈T

∑
e

τ(e)dxτ (e)edµ

≤
∫
τ∈T

2
∑
e

τ(e)yτ (e)dµ ≤
∫
τ∈T

2
∑
e

τ(e)y(e)dµ = 2
∑
e

y(e)

∫
τ∈T

τ(e)dµ

≤ O(log n)
∑
e

a(e)y(e),

where yτ and y denote optimal solutions of INSP[f ] with cost τ and of INSP[f ] with
cost a, respectively. The same argument implies that E[

∑
a(e)xτ (e)] is at most O(log n)

times the optimal value of NSP[f ] with cost a.

Theorem 2.2. Suppose that f is a normal skew-supermodular function given by an eval-
uation oracle. There exists a randomized O(log n)-approximation algorithm for NSP[f ]
and for INSP[f ].

Our algorithm for INSP[f ] is comparable to the primal-dual 2H(fmax)-approximation
algorithm in the case where fmax is a polynomial of the number n of nodes, and is of
course much inferior than Jain’s algorithm in approximation factor. Also our algorithm
is not extendable to SND[f ; l, u]. However our algorithm works only with an evaluation
oracle of f , and is considerably fast. For the special case of f = R, Jain’s algorithm
needs to solve the LP-relaxation SND∗ in each step. This is quite costly, and almost
impossible for a large instance; the running time of Jain’s algorithm is beyond O(n6),
as estimated in [15, Section 8]. Note also that the running time of the primal-dual
approximation algorithm is beyond O((fmax)2n2); see [17, p. 539]. On the other hand,
the running time of our algorithm is O(n2) par one trial. So our algorithm may also be
useful to obtain a good initial feasible solution for local search heuristics, e.g., [22]. An
experimental study will be given in a future work.

3 Proof

We need two lemmas. The first lemma is a general property of a symmetric skew-
supermodular function. We denote

∑
e∈F x(e) by x(F ) for F ⊆ E(KV ).

Lemma 3.1. Let f : 2V → Z+ be a symmetric skew-supermodular function and F a
cross-free family on V . If x : E(KV )→ R+ satisfies x(δX) = f(X) for all X ∈ F , then
one of the following holds:

(1) x satisfies x(δX) ≥ f(X) for all X ⊆ V .

(2) There exists W ⊆ V such that x(δW ) < f(W ) and F ∪ {W} is cross-free.

In particular, if F is a maximal cross-free family, then (1) holds.

Proof. By symmetry, we may assume Y ∈ F ⇔ V \ Y ∈ F . Suppose that (1) does not
hold. Then there is Z ⊆ V with x(δZ) < f(Z). Take such a Z ⊆ V such that the
crossing number NZ := |{X ∈ F | Z and X are crossing}| is minimum, where X and Y
are said to be crossing if all X ∩ Y , V \ (X ∪ Y ), X \ Y , and Y \X are nonempty. If
NZ = 0, we are done. Suppose not. Take Y ∈ F such that Z and Y are crossing. By
the skew-supermodularity of f , we have

f(Y ) + f(Z) ≤ f(Y ∩ Z) + f(Y ∪ Z) or f(Y ) + f(Z) ≤ f(Y \ Z) + f(Z \ Y ).
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By symmetry, we may assume the first case; otherwise replace Y by V \Y . By x(δY ) =
f(Y ) and x(δZ) < f(Z), we have

x(δY ) + x(δZ) < f(Y ) + f(Z) ≤ f(Y ∩ Z) + f(Y ∪ Z).

By x ≥ 0, we have x(δ(Y ∩ Z)) + x(δ(Y ∪ Z)) ≤ x(δY ) + x(δZ). Thus x(δ(Y ∩ Z)) <
f(Y ∩Z) or x(δ(Y ∪Z)) < f(Y ∪Z). Again, by symmetry, we may assume x(δ(Y ∩Z)) <
f(Y ∩ Z); otherwise replace Y by V \ Y and replace Z by V \ Z.

Then NY ∩Z < NZ (see [25, Lemma 23.15]), and this contradicts the minimality
assumption.

The second lemma is about the path decomposition of a capacitated trivalent tree.
A tree is said to be trivalent if each node that is not a leaf has degree three, where a leaf
of a tree is a node of degree one.

Lemma 3.2. Let T be a trivalent tree, and c : E(T ) → Z+ an integer-valued edge-
capacity. If c(e) + c(e′) − c(e′′) ∈ 2Z+ holds for every pairwise-incident triple (e, e′, e′′)
of edges, then there exists a pair (P, λ) of a set P of simple paths connecting leaves and
an integral weight λ : P → Z+ such that

∑
P∈P λ(P )1E(P ) = c.

Proof. For every incident pair e, e′ of edges, define l(e, e′) by

l(e, e′) := (c(e) + c(e′)− c(e′′))/2,

where e′′ is the third edge incident to e and to e′. Then l(e, e′) is a nonnegative integer,
and c(e) = l(e, e′) + l(e, e′′). (P, λ) is constructed as follows.

Let P := ∅ initially. Take edge e = uv with c(e) > 0. Suppose that u is not a leaf.
Then there is an edge e′ incident to u with l(e, e′) > 0. Necessarily c(e′) > 0 (otherwise
c(e′) = 0 and l(e, e′) = 0). Hence we can extend e to a simple path P = (e0, e1, . . . , ek)
connecting leaves. Add P to P. Define λ(P ) := mini=1,...,k l(ei−1, ei) (> 0). Let c̃ :=
c − λ(P )1E(P ). Then c̃ satisfies the condition of this lemma. To see this, take an
arbitrary pairwise-incident triple (e, e′, e′′) of edges. We show c̃(e) + c̃(e′)− c̃(e′′) ∈ 2Z+.
Here E(P ) ∩ {e, e′, e′′} is ∅, {e′, e′′}, {e, e′′}, or {e, e′}. For the first three cases, we
have c̃(e) + c̃(e′) − c̃(e′′) = c(e) + c(e′) − c(e′′) ∈ 2Z+. For the last case, we have
c̃(e) + c̃(e′) − c̃(e′′) = c(e) + c(e′) − c(e′′) − 2λ(P ), which must be a nonnegative even
integer by definition of λ(P ).

Let c← c̃, and repeat this process. In each step, at least one of l(e, e′) is zero. After
O(|V (T )|) step, we have c = 0 and obtain a desired (P, λ).

Proof of Theorem 1.2. Consider the LP-dual of NSP[f ], which is given by

DualNSP[f ]: Max.
∑
X⊆V

π(X)f(X)

s.t.
∑
X⊆V

π(X)1δX ≤ a

π : 2V → R+.

Suppose that a is represented by a =
∑

X∈F l(X)1δX for some cross-free family F and
some nonnegative weight l on F . Define π : 2V → R+ by

π(X) =

{
l(X) if X ∈ F ,
0 otherwise,

(X ⊆ V ).

7



Then π is feasible to DualNSP[f ] with the objective value
∑

X∈F l(X)f(X). We are
going to construct a feasible integral solution x in NSP[f ] satisfying

(3.1) x(δX) = f(X) (X ∈ F).

If this is possible, then, by the complementary slackness, x is optimal to NSP[f ] and π
is optimal to DualNSP[f ]; hence Theorem 1.2 is proved.

Take a maximal cross-free family F∗ including F . Here recall the tree-representation
of a cross-free family; see [7, Section 1.4] and [21, Section 13.4]. By the maximality of
F∗, there exists a trivalent tree T on vertex set V ∪ I with the following properties:

(3.2) (1) V is the set of leaves of T , and I is the set of non-leaf nodes.

(2) F∗ \ {∅, V } =
⋃
e∈E(T ){Ae, Be}, where {Ae, Be} denotes the bipartition of

V such that Ae (or Be) is the set of leaves of one of components of T − e.

Define edge-weight c : E(T )→ Z+ by

(3.3) c(e) := f(Ae)(= f(Be)) (e ∈ E(T )).

By symmetry (1.1) and the evenly-normal property (1.6) of f , for each pairwise-incident
triple (e, e′, e′′) of edges in T , we have

c(e) + c(e′)− c(e′′) = f(Ae) + f(Ae′)− f(Ae′′) ∈ 2Z+,

where we can assume Ae ∩ Ae′ = ∅ and Ae′′ = Ae ∪ Ae′ . By Lemma 3.2, there exists a
pair (P, λ) of a set P of simple paths connecting V and a positive integral weight λ on
P with

∑
P∈P λ(P )1E(P ) = c. Define x : E(KV )→ Z+ by

(3.4) x(ij) :=

{
λ(P ) if ∃P ∈ P : P connects i and j,
0 otherwise,

(ij ∈ E(KV )).

Since each P is simple, we have

x(δAe) = c(e) = f(Ae) (e ∈ E(T )).

By (3.2) (2), this implies
x(δX) = f(X) (X ∈ F∗).

By Lemma 3.1, x is feasible to NSP[f ]. By F ⊆ F∗, x satisfies (3.1). Therefore, x is
an integral optimal solution in NSP[f ], π is an optimal solution in DualNSP[f ], and the
optimal value is equal to

∑
X∈F l(X)1δX . �

Algorithm to find an integral optimal solution in Theorem 1.2. Our proof
gives the following O(nθ + n2) algorithm to find an integral optimal solution, where
n := |V |, and θ denotes the running time of an oracle of f .

step 1: Take a maximal cross-free family F∗ including F .

step 2: Construct a trivalent tree T with (3.2).

step 3: Define edge-weight c by (3.3).

step 4: Decompose c as c =
∑

P∈P λ(P )1E(P ) according to the proof of Lemma 3.2.

step 5: Define x by (3.4), and then x is an integral optimal solution in NSP[f ].

Steps 1,2 can be done in O(n) time, step 3 can be done by O(n) calls of f , and steps 4,5
can be done in O(n2) time.
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Gomory-Hu algorithm reconsidered. The Gomory-Hu algorithm can be viewed
as a special case of our algorithm. First note that, in the case of unit cost, we can take
an arbitrary maximal cross-free family in step 1. Consider a dominant requirement tree
T with respect to r. For e ∈ E(T ), let {Ae, Be} denote the bipartition of V determined
by T − e. Then F :=

⋃
e∈E(T ){Ae, Be} is cross-free. Extend F to a maximal cross-free

family F∗. Take a trivalent tree T̄ corresponding to F∗. Define c : E(T̄ )→ Z+ by (3.3)
with f := R. Recall that R is proper, i.e., it satisfies (2.1). By symmetry, the maximum
of R(A), R(B), and R(A ∪ B) is attained at least twice. This implies the following
property of c:

(3.5) For each pairwise-incident triple (e, e′, e′′) of edges, the maximum of c(e),
c(e′), and c(e′′) is attained at least twice.

Decompose c as c =
∑

F∈Ḡ σ(F )1E(F ) for a family of subtrees Ḡ and a positive integral
weight σ on Ḡ with the property (∗) in the step 3 of the Gomory-Hu algorithm. By
(3.5), the set of leaves of each subtree F ∈ Ḡ belongs to V . Therefore we may apply
the path decomposition in Lemma 3.2 to each σ(F )1E(F ) independently. From the path
decomposition of σ(F )1E(F ), define xF by xF := (σ(F )/2)1E(CF ) if |V (F )| ≥ 3 and
xF := σ(F )1E(CF ) if |V (F )| = 2, where a cycle CF of vertices V (F ) in KV . Then
x :=

∑
F∈Ḡ xF is optimal.

By construction, T can be regarded as a tree obtained by contracting some of edges
of T̄ . So we can regard E(T ) as E(T ) ⊆ E(T̄ ). Since T is a maximum spanning tree,
we have

r(e) = R(Ae)(= R(Be)) (e ∈ E(T )).

This means that r coincides with the restriction of c to E(T ). Also one can see from
the definition of R that the family obtained from Ḡ by contracting the edges coincides
with the family G in the Gomory-Hu algorithm (see Introduction). Therefore, the above-
mentioned process coincides with the Gomory-Hu algorithm.

Remark 3.3. Lemma 3.1 is viewed as a symmetric analogue of the following well-
property of submodular functions: If f is a submodular function on V and x : V → R
satisfies x(Y ) = f(Y ) (Y ∈ F) for some maximal chain F in 2V , then x(X) ≤ f(X)
for all X ⊆ V . See [7, 8, 21]. This property guarantees the correctness of the greedy
algorithm for the base polytope. Also in our algorithm, Lemma 3.1 is used for a similar
purpose. So our algorithm may be a symmetric analogue of the greedy algorithm.
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