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Abstract

Network synthesis problem is the problem of constructing a minimum cost net-
work satisfying a given flow-requirement. A classical result of Gomory and Hu is
that if the cost is uniform and the flow requirement is integer-valued, then there
exists a half-integral optimal solution. They also gave a simple algorithm to find a
half-integral optimal solution.

In this paper, we show that this half-integrality and the Gomory-Hu algorithm
can be extended to a class of fractional cut-covering problems defined by skew-
supermodular functions. Application to approximation algorithm is also given.

1 Introduction

Let Ky be a complete undirected graph on node set V. We are given a nonnegative
integer-valued flow-requirement r;; € Z, for each unordered pair ij of nodes. A non-
negative edge-capacity = : E(Ky) — R is said to be feasible if, for every node-pair ij,
the maximum value of an (7, j)-flow under the capacity = is at least r;;. We are also
given a nonnegative edge-cost a : E(Ky) — Ry. The network synthesis problem (NSP)
is the problem of finding a feasible edge-capacity of the minimum cost, where the cost
of edge-capacity x is defined as ¢ g, ) ale)z(e).

A classical result by Gomory and Hu [10] is that NSP admits a half-integral optimal
solution provided the edge-cost is uniform.

Theorem 1.1 ([10]). Suppose a(e) =1 for e € E(Ky). Then we have the following:
1
(1) The optimal value of NSP is equal to 5 Zmax{rij | j e V\{i}}.
icV
(2) There exists a half-integral optimal solution in NSP.

See [5, Chapter 4], [7, Section 7.2.3|, and [21, Section 62.3]. Gomory and Hu [10]
presented the following simple algorithm to find a half-integral optimal solution, where
1y denotes the incidence vector of a set Y:

1. Define an edge-weight r on Ky by r(ij) := ry;.
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2. Compute a maximum weight spanning tree T" of Ky with respect to r. This tree
is called a dominant requirement tree.

3. Restrict 7 to E(T). Decompose r into 7 = Y pcg0(F)lg) for a family G of
subtrees in T" and a positive integral weight ¢ on G such that

(x) for F,F' € G, one of F, F’ is a subgraph of the other, or F' and F’ are vertex-
disjoint.

4. For F € G, take a cycle Cp (in Ky ) of vertices V(F).

5. Define z : E(Ky) — R4 by

1
vi= Y oPMpenty Y, o(P)lpey.

FeG:|V(F)|=2 FeG:|V (F)|>2
Then z is an optimal solution of NSP with unit edge-cost.

The running time of this algorithm is O(n?); see [16, Chapter 12]. For general edge-
costs, this half-integrality fails, and, in subsequent paper [11], Gomory and Hu presented
a practically efficient algorithm for NSP by the column generation method applied to an
LP-formulation of an exponential size (though NSP has an LP-formulation of a polyno-
mial size; see [21, p. 1054]).

Let us introduce a well-studied class of exponential-size linear problems capturing
NSP. Let f : 2¥ — Z. be a symmetric nonnegative integer-valued set function on V
satisfying f(0) = f(V) = 0, where a set function f is called symmetric if it satisfies

(1.1) fX)=fVAX) (XCV).

For X C V, let X denote the set of edges in Ky connecting X and V' \ X. Let
Cover(f) denote the set of nonnegative edge-capacities = : F(Ky) — R satisfying the
cut-covering constraint ) sy z(e) > f(X) for each X C V. Namely,

(1.2) Cover(f) := {:B € RE(KV) } Z z(e) > f(X) (X C V)}

ecd X

As above, we are given an edge-cost a : F(Ky) — R. Consider the following minimum-
cost fractional cut-covering problem:

NSP[f]: Min. Z a(e)x(e) s.t. x € Cover(f).
e€E(Ky)

A number of combinatorial optimization problem can be formulated in this way (see the
next section). In particular, NSP is a special case of NSP[f]. Indeed, for flow-requirement
r;j, define R by

(1.3) R(X):=max{rj |[ie X Fj} D#XCV),

and R(D) = R(V) = 0. By the max-flow min-cut theorem, NSP[R] coincides with NSP.

Our main result is about a half-integrality property of NSP[f] for a special skew-
supermodular function f and a special edge-cost a, extending Theorem 1.1. Recall that
a symmetric set function f is said to be skew-supermodular if it satisfies

(L4) f(X)+f(Y) <max{f(XNY)+ f(XUY), F(X\Y)+fY\X)} (X,Y CV)



The skew-supermodularity has played important roles in optimizations over Cover(f);
see the next section. Observe that the inequality (1.4) for a disjoint pair is trivial. We
introduce a new property imposed on disjoint pairs. A skew-supermodular function f is
said to be normal if it satisfies

(1.5) fX)+fY)—f(XUY)>0 (X,YCV:XNY =0),
and is said to be evenly-normal if it satisfies
(1.6) fX)+fY)=f(XUY)e2Z, (X, YCV:XNY=0).

Next we consider special edge-costs. An edge-cost a is called a tree metric if a is
represented by the distances between a subset of vertices in a weighted tree. It is well-
known that a is a tree metric if and only if there exists a pair (F,l) of a cross-free
family 7 C 2V and a nonnegative weight [ on F such that a = >y = 1(X)1sx; see [3].
Recall that a family F C 2V is said to be cross-free if for every X,Y € F one of X NY,
VA (XUY), X\Y,and Y\ X is emtpy. The main result of this paper is the following.

Theorem 1.2. Suppose that f is evenly-normal skew-supermodular and a is a tree metric
represented as a = Y x.r (X)1s5x for a cross-free family F and a nonnegative weight
l:F — Ryi. Then we have the following:

(1) The optimal value of NSP[f] is equal to ) .7 1(X)f(X).
(2) There exists an integral optimal solution in NSP[f].

Furthermore there exists an O(nf +n?) algorithm to find an integral optimal solution in
NSP|f], where n := |V| and 0 is the running time of evaluating f.

This theorem includes the half-integrality for NSP[f] for a normal skew-supermodular
function f. One can see this fact from: (1) if f is normal skew-supermodular, then 2f
is evenly-normal skew-supermodular, and (2) if x is optimal to NSP[2f], then z/2 is
optimal to NSP[f]. Also Theorem 1.2 includes Theorem 1.1. Indeed, it is easy to see
that R is normal skew-supermodular (the skew-supermodularity of R is well-known |7,
Lemma 8.1.9]). Since the unit cost is represented as > ;- (1/2)15(, we can take {{i} |
ieV}as F, with ({i}) :=1/2 (i € V). Applying Theorem 1.2 to NSP[2R], we obtain
Theorem 1.1. Note that R is evaluated in O(n) time; R(X) is equal to max{r;; | ij €
E(T),i € X # j} for a dominant requirement tree 7. Therefore the running time of our
algorithm is O(n?); our algorithm in fact generalizes the Gomory-Hu algorithm. Also
there are many O(n?) algorithms to determine whether a is a tree metric and to obtain
an expression a = )y r[(X)1sx; Neighbor-Joining [20] is a popular method.

The rest of this paper is organized as follows. In the next section (Section 2), we
discuss the relevance to previous works on skew-supermodular survivable network design.
We also present applications of Theorem 1.2 to approximation algorithms, though our
original motivation was to understand the half-integrality property and the Gomory-Hu
algorithm of NSP from a set-function property of f. In Section 3, we give a proof of
Theorem 1.2.

2 Related work and application

Related work. Integer linear optimization over Cover(f) with capacity bound con-
straint [ < x < u, denoted by SNDI[f;[,u], is a general form of the survivable network
design problem, and can formulate various combinatorial optimization problems; see [17,



Chapter 20] and references therein. The natural LP-relaxation of SNDJ[f; [, u] is denoted
by SND*[f;1,u]. In particular SND*[f;0, +o00] is equal to NSP[f]. The integer network
synthesis SND|[f; 0, 400] is denoted by INSP[f].

Let us mention examples as well as relevances to our result. For T' C V with |T|
even, define a set function fr by fr(X):=1for X CV with | X NT| odd and fr(X) :=
0 for others. Then INSP[fr] is the minimum-cost 7-join problem (with nonnegative
costs). The Edmonds-Johnson theorem [12] says that the LP-relaxation NSP[fr| is
exact. Namely the integrality holds for NSP[fr]| with every cost function a. This set
function fr is evenly-normal skew-supermodular. Our theorem asserts the integrality
only for tree-metric edge-costs, and that an optimal T-join can be greedily found in this
case.

For a positive integer k£ > 0, define a normal skew-supermodular function fi by
fe(X) =k (0 # X # V). If k is even, then fj is evenly-normal. Then INSP[f;] is the
minimum k-edge-connected subgraph problem. In particular, INSP[fs] with the degree
constraint is nothing but the traveling salesman problem. Suppose that a is a metric.
Then NSP[fs] is equivalent to the subtour elimination LP-relaxation of TSP; see [25,
23.12]. Suppose further that a is a tree metric. TSP on a tree is quite easy. An optimal
tour is a tour which traces each edge in the tree (at most) twice. This tour in fact
coincides with our integral optimal solution in Theorem 1.2.

Consider the case f = R for connectivity requirement {r;;} (see (1.3)). Then
SNDIR; 1, +00] is the connectivity augmentation problem. Frank [6] gave a polynomial
time algorithm to SND[R; [, +00] for node-induced edge-costs. An edge-cost a is called
node-induced if there is b : V' — R with

a(ij) = b() +0(j) (i,j € V).

As a corollary, he proved the half-integrality of SND*[R; [, +o0] for node-induced edge-
costs. Actually Frank’s argument works for a proper function [17, Definition 20.17],
which is a symmetric set function f satisfying

(2.1) max{f(X), f(Y)} > f(XUY) (X,)YCV:XNY =0).

See [2] for details. Notice that R is proper. The condition (2.1) is stronger than the
normality condition (1.5), and is stronger than the skew-supermodularity (1.4); see [17,
Proposition 20.18]. Observe that a node-induced cost function is a tree metric corre-
sponding to a star. So our result extends Frank’s half-integrality result in the case of
[ = 0. Note that Frank’s argument is based on the edge-splitting technique, and does
not explain the simplicity of the Gomory-Hu algorithm. Note also that our theorem is
not applicable to SND*[R; [, 4+-00] (since the negative of cut function (X — Y .5+ I(e))
is not normal in general).

In the study of hypergraph connectivity augmentation, Szigeti [23] showed that for
an arbitrary skew-supermodular function f there is a half-integral optimal solution in
NSP[f] with uniform-cost. His proof is also based on the edge-splitting. We do not
know how to find this half-integral solution in polynomial time, since the edge-splitting
approach needs to check whether a given z € RF(EV) belongs to Cover(f); see the
argument below.

Approximation algorithm of SND(f; [, u] for proper/skew-supermodular functions f
has also been extensively studied; see [25, Chapters 22, 23] and [17, Section 20.3].
The integer network synthesis INSP[R] is NP-hard for general edge-cost. The skew-
supermodular INSP[f] is NP-hard even if the edge-cost is uniform, since it includes an
NP-hard subclass of the NA-connectivity augmentation problem [18]; see [14, Lemma



1.1]. There are two major approximation algorithms for SND{[f; [, u]: Jain’s 2-approximation
algorithm [15] and the primal-dual 2H ( fmax)-approximation algorithm [9], where fiax 1=
maxxcy f(X) and H(k) :== 1+ 1/2+ --- + 1/k. The half-integrality of SND*[f;, u]
would yield a 2-approximation algorithm for SND[f;l,u]. However SND*[f;[, u] does
not have the half-integrality in general; see [25, Lemma 23.2] and [17, p. 544-545].
In [15], Jain discovered a weaker property that every basic solution x of SND*[f;1, u]
has an edge e with z(e) > 1/2. Based on this property, he devised a 2-approximation
algorithm for SND(f;, u], provided a separation oracle of Cover(f) or a polynomial time
algorithm solving LP-relaxation SND*[f; [, u] is available. The primal-dual approxima-
tion algorithm also needs a feasibility-checking oracle of Cover(f), an oracle of checking
whether a given x belongs to Cover(f). Another notable result is a 7/4-approximation
algorithm by Nutov [19] for SND|[f; [, +oc] with uniform edge-cost. His algorithm also
needs a feasibility-checking oracle of Cover(f). For a proper function f (given by an
oracle), there is an efficient separation algorithm for Cover(f) [17, Theorem 20.20], and
SND*[f;1,u] can be solved in polynomial time by the ellipsoid method. In addition,
if f = R, then the feasibility-check of Cover(R) can be done by any max-flow min-cut
algorithm, and SND*[R; [, u] has a polynomial-size LP formulation, which can be solved
in polynomial time by the interior point method.

For a general skew-supermodular function f (given by an oracle), however, no effi-
cient feasibility-checking/separation algorithm for Cover(f) is known; see [17, p. 534].
This problem is reduced to the problem of maximizing a skew-supermodular function,
which is also not known to be (oracle-)tractable; see EGRES Open [13]. Even if the nor-
mality condition (1.5) is imposed, we still do not know whether Cover(f) has an efficient
separation algorithm, and we do not know whether NSP[f] is solvable in polynomial
time. From this point of view, our result might be interesting since it gives a new class
of oracle-tractable NSP|[f].

Application to approximation algorithm. As is well-known, the half-integrality
leads to a 2-approximation algorithm; see [25]. For a half-integral optimal solution z
of NSP[f], by rounding up z(e) to [z(e)], we obtain a feasible solution [z] of INSP[f],
which is a 2-approximate solution of INSP[f].

Theorem 2.1. Suppose that f is a normal skew-supermodular function given by an
evaluation oracle. There is a 2-approzimation algorithm for INSP[f] with tree-metric
costs.

An interesting point is that this algorithm does not require any feasibility-checking
oracle of Cover(f). Furthermore, by combining Theorem 1.2 with a standard argument of
Bartal’s probabilistic embedding [1] (see [24, Section 8.5, 8.6]), we obtain a randomized
O(logn)-approximation algorithm for INSP[f] with general cost as follows. We can
assume that edge-cost a is a metric, i.e., it satisfies the triangle inequalities a(ij)+a(jk) >
a(ik) (i,j,k € V) (see the proof of [25, Theorem 3.2]), and there is no edge e with
a(e) = 0 (otherwise, contract all edges e with a(e) = 0). It is shown by [4] that there
exists a randomized O(n?) algorithm to find a tree metric 7 with a(e) < 7(e) and
E[r(e)] < O(logn)a(e) (e € E(Ky)), where E[X] is the expected value of a random
variable X. More precisely, there is an O(n?) algorithm to sample a tree metric from
the space T of tree metrics 7 dominating a with respect to a probability measure pu
on T satisfying E[r(e)] = [ .- 7(e)du < O(logn)a(e) (e € E(Ky)). Let 7 be a half-
integral optimal solution = of NSP[f] for tree-metric cost 7 (obtained by the algorithm
in Theorem 1.2). The rounding solution [z"] is a 2-approximate solution of INSP[f]
with cost 7 (by Theorem 2.1), and has the expected objective value at most O(logn)



times the optimal value of INSP[f] with cost a, since

> ae)s ] [ Xt 1du</ LCIEC

e

g/ 22 du</ Z du_22y / (e)dpu
< O(logn) Z a(e)y(e),

e

E

where y” and y denote optimal solutions of INSP[f] with cost 7 and of INSP[f] with
cost a, respectively. The same argument implies that E[> a(e)z" (e)] is at most O(logn)
times the optimal value of NSP[f] with cost a.

Theorem 2.2. Suppose that f is a normal skew-supermodular function given by an eval-
uation oracle. There exists a randomized O(logn)-approzimation algorithm for NSP|f]
and for INSP|[f].

Our algorithm for INSP[f] is comparable to the primal-dual 2H ( fmax)-approximation
algorithm in the case where f.x is a polynomial of the number n of nodes, and is of
course much inferior than Jain’s algorithm in approximation factor. Also our algorithm
is not extendable to SND|[f; 1, u]. However our algorithm works only with an evaluation
oracle of f, and is considerably fast. For the special case of f = R, Jain’s algorithm
needs to solve the LP-relaxation SND* in each step. This is quite costly, and almost
impossible for a large instance; the running time of Jain’s algorithm is beyond O(n®),
as estimated in [15, Section 8]. Note also that the running time of the primal-dual
approximation algorithm is beyond O(( fmax)?n?); see [17, p. 539]. On the other hand,
the running time of our algorithm is O(n?) par one trial. So our algorithm may also be
useful to obtain a good initial feasible solution for local search heuristics, e.g., [22]. An
experimental study will be given in a future work.

3 Proof

We need two lemmas. The first lemma is a general property of a symmetric skew-

supermodular function. We denote ) . z(e) by z(F) for FF C E(Ky).

Lemma 3.1. Let f : 2V — Z_ be a symmetric skew-supermodular function and F a
cross-free family on V. If v : E(Ky) — Ry satisfies x(6X) = f(X) for all X € F, then
one of the following holds:

(1) z satisfies x(6X) > f(X) for all X C V.
(2) There exists W CV such that z(6W) < f(W) and F U{W} is cross-free.
In particular, if F is a mazimal cross-free family, then (1) holds.

Proof. By symmetry, we may assume Y € F < V \'Y € F. Suppose that (1) does not
hold. Then there is Z C V with z(0Z) < f(Z). Take such a Z C V such that the
crossing number Nz := |[{X € F | Z and X are crossing}| is minimum, where X and Y
are said to be crossing if all X NY, V\ (X UY), X \Y, and Y \ X are nonempty. If
Nz = 0, we are done. Suppose not. Take Y € F such that Z and Y are crossing. By
the skew-supermodularity of f, we have

f)+f(2)<f¥YNnZ)+ fYUZ)or f(Y)+[(Z2) < fY\Z)+ f(Z\Y).



By symmetry, we may assume the first case; otherwise replace Y by V'\ Y. By z(0Y) =
f(Y)and 2(62) < f(Z), we have

2(6Y) +2(62Z) < f(V) + f(Z) < (Y N Z) + f(Y U Z).

By x > 0, we have z(0(Y N Z)) + z(6(Y U Z)) < z(0Y) + x(6Z). Thus z(6(Y N 2Z)) <
f¥YNnZ)orz(6(YUZ)) < f(YUZ). Again, by symmetry, we may assume z(6(Y NZ)) <
f(Y N Z); otherwise replace Y by V' \ Y and replace Z by V' \ Z.

Then Nynz < Nz (see [25, Lemma 23.15]), and this contradicts the minimality
assumption. O

The second lemma is about the path decomposition of a capacitated trivalent tree.
A tree is said to be trivalent if each node that is not a leaf has degree three, where a leaf
of a tree is a node of degree one.

Lemma 3.2. Let T be a trivalent tree, and ¢ : E(T) — Z, an integer-valued edge-
capacity. If c(e) + c(e') — c(€”) € 2Z holds for every pairwise-incident triple (e, e’,e”)
of edges, then there exists a pair (P, \) of a set P of simple paths connecting leaves and
an integral weight X : P — Z such that Y pcp A(P)lgp) = c.

Proof. For every incident pair e, ¢’ of edges, define I(e, e’) by

I(e,€) := (c(e) + c(e') — (")) /2,

where € is the third edge incident to e and to e’. Then (e, ') is a nonnegative integer,
and c(e) = l(e,e’) + (e, €e”). (P, ) is constructed as follows.

Let P := () initially. Take edge e = uv with c(e) > 0. Suppose that u is not a leaf.
Then there is an edge €’ incident to u with I(e,e’) > 0. Necessarily c(e’) > 0 (otherwise
c(e’) =0 and I(e,e’) = 0). Hence we can extend e to a simple path P = (e, e1,...,€ek)
connecting leaves. Add P to P. Define A(P) := min;—1 __l(e;—1,€;) (> 0). Let ¢ :=
c— AP)1 g(p)- Then ¢ satisfies the condition of this lemma. To see this, take an
arbitrary pairwise-incident triple (e, ¢/, ") of edges. We show ¢(e) +c(e’) —c(e”) € 2Z..
Here E(P) N{e, e e’} is 0, {€,e"}, {e,e"}, or {e,€'}. For the first three cases, we
have ¢(e) + é(e’) — ¢(e”) = c(e) + c(e') — c(e”) € 2Z,. For the last case, we have
éle) +é(e) —c(e”) = cle) + c(e') — c(e”) — 2X\(P), which must be a nonnegative even
integer by definition of A(P).

Let ¢ + ¢, and repeat this process. In each step, at least one of I(e, €’) is zero. After
O(|V(T)|) step, we have ¢ = 0 and obtain a desired (P, \). O

Proof of Theorem 1.2. Consider the LP-dual of NSP[f], which is given by

DualNSP[f]:  Max. Y m(X)f(X)

s.t. Z 7(X)lsx <a
XCV

7:2Y¥ 5 Ry,

Suppose that a is represented by a = ) v I(X)15x for some cross-free family F and
some nonnegative weight I on F. Define 7 : 2V — R by

(X)) if XeF
m(X) = { 0 otherwise, (Xcv).



Then 7 is feasible to DualNSP[f] with the objective value ) .- 1(X)f(X). We are
going to construct a feasible integral solution z in NSP[f] satisfying

(3.1) 2(6X) = f(X) (X e F).

If this is possible, then, by the complementary slackness, = is optimal to NSP[f] and 7
is optimal to DualNSP[f]; hence Theorem 1.2 is proved.

Take a maximal cross-free family F* including F. Here recall the tree-representation
of a cross-free family; see [7, Section 1.4] and [21, Section 13.4]. By the maximality of
F*, there exists a trivalent tree T" on vertex set V U I with the following properties:

(3.2) (1) V is the set of leaves of T', and I is the set of non-leaf nodes.

, = e, Bey, where { A, By denotes the bipartition o
2) F*\ {0,V € E(T) A., B h A., B.} d he bi iti f
V such that A, (or Be) is the set of leaves of one of components of 7' — e.

Define edge-weight ¢ : E(T) — Z4 by

(3-3) c(e) := f(Ae)(= f(Be)) (e € E(T)).

By symmetry (1.1) and the evenly-normal property (1.6) of f, for each pairwise-incident
triple (e, €', €”) of edges in T, we have

c(e) +c(e') — c(e”) = f(Ae) + f(Ae) — f(Aer) € 22,

where we can assume A, N A, = () and A.r = A, U A, By Lemma 3.2, there exists a
pair (P, \) of a set P of simple paths connecting V' and a positive integral weight A on
P with 3 pep A(P)1gpy = c. Define x : E(Ky) — Z by

A(P) if 3P € P : P connects i and j,

(34) (i) = { ey (ij € B(Kv)).

Since each P is simple, we have
z(0Ae) = c(e) = f(Ae) (e € E(T)).

By (3.2) (2), this implies
z(0X) = f(X) (X eF").

By Lemma 3.1, = is feasible to NSP[f]. By F C F*, x satisfies (3.1). Therefore, x is
an integral optimal solution in NSP[f], 7 is an optimal solution in DualNSP[f], and the
optimal value is equal to > v 1(X)1sx. O

Algorithm to find an integral optimal solution in Theorem 1.2. Our proof
gives the following O(nf + n?) algorithm to find an integral optimal solution, where
n :=|V], and 6 denotes the running time of an oracle of f.

step 1: Take a maximal cross-free family F* including F.

step 2: Construct a trivalent tree 7" with (3.2).

step 3: Define edge-weight ¢ by (3.3).

step 4: Decompose ¢ as ¢ = ) pcp A(P)1g(p) according to the proof of Lemma 3.2.
step 5: Define z by (3.4), and then x is an integral optimal solution in NSP[f].

Steps 1,2 can be done in O(n) time, step 3 can be done by O(n) calls of f, and steps 4,5
can be done in O(n?) time.



Gomory-Hu algorithm reconsidered. The Gomory-Hu algorithm can be viewed
as a special case of our algorithm. First note that, in the case of unit cost, we can take
an arbitrary maximal cross-free family in step 1. Consider a dominant requirement tree
T with respect to r. For e € E(T), let {A., B.} denote the bipartition of V' determined
by T'—e. Then F := U.cp(r){Ae, Be} is cross-free. Extend F to a maximal cross-free
family F*. Take a trivalent tree T' corresponding to F*. Define ¢ : E(T) — Z, by (3.3)
with f := R. Recall that R is proper, i.e., it satisfies (2.1). By symmetry, the maximum
of R(A), R(B), and R(A U B) is attained at least twice. This implies the following

property of c:

(3.5) For each pairwise-incident triple (e, €’,e”) of edges, the maximum of ¢(e),
c(e’), and c(e”) is attained at least twice.

Decompose ¢ as ¢ = > reg 0(F)1gr) for a family of subtrees G and a positive integral
weight o on G with the property () in the step 3 of the Gomory-Hu algorithm. By
(3.5), the set of leaves of each subtree F' € G belongs to V. Therefore we may apply
the path decomposition in Lemma 3.2 to each o(F')1 g(r) independently. From the path
decomposition of o(F)lgpy, define xp by zp = (0(F)/2)1gc, if [V(F)| > 3 and
rp = o(F)lgc,) if [V(F)| = 2, where a cycle Cr of vertices V(F) in Ky. Then
T =) pegTF is optimal.

By construction, T' can be regarded as a tree obtained by contracting some of edges
of T. So we can regard E(T) as E(T) C E(T). Since T is a maximum spanning tree,
we have

r(e) = R(Ae)(= R(Be)) (e € E(T)).

This means that r coincides with the restriction of ¢ to E(T'). Also one can see from
the definition of R that the family obtained from G by contracting the edges coincides
with the family G in the Gomory-Hu algorithm (see Introduction). Therefore, the above-
mentioned process coincides with the Gomory-Hu algorithm.

Remark 3.3. Lemma 3.1 is viewed as a symmetric analogue of the following well-
property of submodular functions: If f is a submodular function on V and z : V. — R
satisfies z(Y) = f(Y) (Y € F) for some maximal chain F in 2", then z(X) < f(X)
for all X C V. See [7, 8, 21]. This property guarantees the correctness of the greedy
algorithm for the base polytope. Also in our algorithm, Lemma 3.1 is used for a similar
purpose. So our algorithm may be a symmetric analogue of the greedy algorithm.
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