On Half-integrality of Network Synthesis Problem

Than Nguyen HAU, Hiroshi HIRAI^{*}, and Nobuyuki TSUCHIMURA[†]

September, 2012 July, 2013 (version 2) April, 2014 (version 3)

Abstract

Network synthesis problem is the problem of constructing a minimum cost network satisfying a given flow-requirement. A classical result of Gomory and Hu is that if the cost is uniform and the flow requirement is integer-valued, then there exists a half-integral optimal solution. They also gave a simple algorithm to find a half-integral optimal solution.

In this paper, we show that this half-integrality and the Gomory-Hu algorithm can be extended to a class of fractional cut-covering problems defined by skewsupermodular functions. Application to approximation algorithm is also given.

1 Introduction

Let K_V be a complete undirected graph on node set V. We are given a nonnegative integer-valued flow-requirement $r_{ij} \in \mathbf{Z}_+$ for each unordered pair ij of nodes. A nonnegative edge-capacity $x : E(K_V) \to \mathbf{R}_+$ is said to be *feasible* if, for every node-pair ij, the maximum value of an (i, j)-flow under the capacity x is at least r_{ij} . We are also given a nonnegative edge-cost $a : E(K_V) \to \mathbf{R}_+$. The *network synthesis problem* (NSP) is the problem of finding a feasible edge-capacity of the minimum cost, where the cost of edge-capacity x is defined as $\sum_{e \in E(K_V)} a(e)x(e)$.

of edge-capacity x is defined as $\sum_{e \in E(K_V)} a(e)x(e)$. A classical result by Gomory and Hu [10] is that NSP admits a half-integral optimal solution provided the edge-cost is uniform.

Theorem 1.1 ([10]). Suppose a(e) = 1 for $e \in E(K_V)$. Then we have the following:

(1) The optimal value of NSP is equal to
$$\frac{1}{2} \sum_{i \in V} \max\{r_{ij} \mid j \in V \setminus \{i\}\}.$$

(2) There exists a half-integral optimal solution in NSP.

See [5, Chapter 4], [7, Section 7.2.3], and [21, Section 62.3]. Gomory and Hu [10] presented the following simple algorithm to find a half-integral optimal solution, where 1_Y denotes the incidence vector of a set Y:

1. Define an edge-weight r on K_V by $r(ij) := r_{ij}$.

^{*}Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 113-8656, Japan. E-mail: hirai@mist.i.u-tokyo.ac.jp

[†]Department of Informatics, School of Science and Technology, Kwansei Gakuin University, Hyogo, 669-1337, Japan. E-mail: tutimura@kwansei.ac.jp

- 2. Compute a maximum weight spanning tree T of K_V with respect to r. This tree is called a *dominant requirement tree*.
- 3. Restrict r to E(T). Decompose r into $r = \sum_{F \in \mathcal{G}} \sigma(F) \mathbf{1}_{E(F)}$ for a family \mathcal{G} of subtrees in T and a positive integral weight σ on \mathcal{G} such that
 - (*) for $F, F' \in \mathcal{G}$, one of F, F' is a subgraph of the other, or F and F' are vertexdisjoint.
- 4. For $F \in \mathcal{G}$, take a cycle C_F (in K_V) of vertices V(F).
- 5. Define $x: E(K_V) \to \mathbf{R}_+$ by

$$x := \sum_{F \in \mathcal{G}: |V(F)| = 2} \sigma(F) \mathbf{1}_{E(C_F)} + \frac{1}{2} \sum_{F \in \mathcal{G}: |V(F)| > 2} \sigma(F) \mathbf{1}_{E(C_F)}.$$

Then x is an optimal solution of NSP with unit edge-cost.

The running time of this algorithm is $O(n^2)$; see [16, Chapter 12]. For general edgecosts, this half-integrality fails, and, in subsequent paper [11], Gomory and Hu presented a practically efficient algorithm for NSP by the column generation method applied to an LP-formulation of an exponential size (though NSP has an LP-formulation of a polynomial size; see [21, p. 1054]).

Let us introduce a well-studied class of exponential-size linear problems capturing NSP. Let $f : 2^V \to \mathbf{Z}_+$ be a symmetric nonnegative integer-valued set function on V satisfying $f(\emptyset) = f(V) = 0$, where a set function f is called *symmetric* if it satisfies

(1.1)
$$f(X) = f(V \setminus X) \quad (X \subseteq V).$$

For $X \subseteq V$, let δX denote the set of edges in K_V connecting X and $V \setminus X$. Let $\operatorname{Cover}(f)$ denote the set of nonnegative edge-capacities $x : E(K_V) \to \mathbf{R}_+$ satisfying the cut-covering constraint $\sum_{e \in \delta X} x(e) \ge f(X)$ for each $X \subseteq V$. Namely,

(1.2)
$$\operatorname{Cover}(f) := \left\{ x \in \mathbf{R}^{E(K_V)}_+ \mid \sum_{e \in \delta X} x(e) \ge f(X) \quad (X \subseteq V) \right\}.$$

As above, we are given an edge-cost $a : E(K_V) \to \mathbf{R}_+$. Consider the following minimumcost fractional cut-covering problem:

$$\mathrm{NSP}[f]: \qquad \mathrm{Min.} \ \sum_{e \in E(K_V)} a(e) x(e) \quad \mathrm{s.t.} \quad x \in \mathrm{Cover}(f).$$

A number of combinatorial optimization problem can be formulated in this way (see the next section). In particular, NSP is a special case of NSP[f]. Indeed, for flow-requirement r_{ij} , define R by

(1.3)
$$R(X) := \max\{r_{ij} \mid i \in X \not\ni j\} \quad (\emptyset \neq X \subset V),$$

and $R(\emptyset) = R(V) = 0$. By the max-flow min-cut theorem, NSP[R] coincides with NSP.

Our main result is about a half-integrality property of NSP[f] for a special skewsupermodular function f and a special edge-cost a, extending Theorem 1.1. Recall that a symmetric set function f is said to be *skew-supermodular* if it satisfies

$$(1.4) \quad f(X) + f(Y) \le \max\{f(X \cap Y) + f(X \cup Y), f(X \setminus Y) + f(Y \setminus X)\} \quad (X, Y \subseteq V).$$

The skew-supermodularity has played important roles in optimizations over Cover(f); see the next section. Observe that the inequality (1.4) for a disjoint pair is trivial. We introduce a new property imposed on disjoint pairs. A skew-supermodular function f is said to be *normal* if it satisfies

(1.5)
$$f(X) + f(Y) - f(X \cup Y) \ge 0 \quad (X, Y \subseteq V : X \cap Y = \emptyset),$$

and is said to be *evenly-normal* if it satisfies

(1.6)
$$f(X) + f(Y) - f(X \cup Y) \in 2\mathbf{Z}_+ \quad (X, Y \subseteq V : X \cap Y = \emptyset).$$

Next we consider special edge-costs. An edge-cost a is called a *tree metric* if a is represented by the distances between a subset of vertices in a weighted tree. It is well-known that a is a tree metric if and only if there exists a pair (\mathcal{F}, l) of a cross-free family $\mathcal{F} \subseteq 2^V$ and a nonnegative weight l on \mathcal{F} such that $a = \sum_{X \in \mathcal{F}} l(X) \mathbf{1}_{\delta X}$; see [3]. Recall that a family $\mathcal{F} \subseteq 2^V$ is said to be *cross-free* if for every $X, Y \in \mathcal{F}$ one of $X \cap Y$, $V \setminus (X \cup Y), X \setminus Y$, and $Y \setminus X$ is empty. The main result of this paper is the following.

Theorem 1.2. Suppose that f is evenly-normal skew-supermodular and a is a tree metric represented as $a = \sum_{X \in \mathcal{F}} l(X) 1_{\delta X}$ for a cross-free family \mathcal{F} and a nonnegative weight $l : \mathcal{F} \to \mathbf{R}_+$. Then we have the following:

- (1) The optimal value of NSP[f] is equal to $\sum_{X \in \mathcal{F}} l(X) f(X)$.
- (2) There exists an integral optimal solution in NSP[f].

Furthermore there exists an $O(n\theta + n^2)$ algorithm to find an integral optimal solution in NSP[f], where n := |V| and θ is the running time of evaluating f.

This theorem includes the half-integrality for NSP[f] for a normal skew-supermodular function f. One can see this fact from: (1) if f is normal skew-supermodular, then 2f is evenly-normal skew-supermodular, and (2) if x is optimal to NSP[2f], then x/2 is optimal to NSP[f]. Also Theorem 1.2 includes Theorem 1.1. Indeed, it is easy to see that R is normal skew-supermodular (the skew-supermodularity of R is well-known [7, Lemma 8.1.9]). Since the unit cost is represented as $\sum_{i \in V} (1/2) \mathbf{1}_{\delta\{i\}}$, we can take $\{\{i\} \mid i \in V\}$ as \mathcal{F} , with $l(\{i\}) := 1/2$ $(i \in V)$. Applying Theorem 1.2 to NSP[2R], we obtain Theorem 1.1. Note that R is evaluated in O(n) time; R(X) is equal to max $\{r_{ij} \mid ij \in E(T), i \in X \not\ni j\}$ for a dominant requirement tree T. Therefore the running time of our algorithm is $O(n^2)$; our algorithm in fact generalizes the Gomory-Hu algorithm. Also there are many $O(n^2)$ algorithms to determine whether a is a tree metric and to obtain an expression $a = \sum_{X \in \mathcal{F}} l(X) \mathbf{1}_{\delta X}$; Neighbor-Joining [20] is a popular method.

The rest of this paper is organized as follows. In the next section (Section 2), we discuss the relevance to previous works on skew-supermodular survivable network design. We also present applications of Theorem 1.2 to approximation algorithms, though our original motivation was to understand the half-integrality property and the Gomory-Hu algorithm of NSP from a set-function property of f. In Section 3, we give a proof of Theorem 1.2.

2 Related work and application

Related work. Integer linear optimization over Cover(f) with capacity bound constraint $l \leq x \leq u$, denoted by SND[f; l, u], is a general form of the *survivable network* design problem, and can formulate various combinatorial optimization problems; see [17,

Chapter 20] and references therein. The natural LP-relaxation of SND[f; l, u] is denoted by $\text{SND}^*[f; l, u]$. In particular $\text{SND}^*[f; 0, +\infty]$ is equal to NSP[f]. The integer network synthesis $\text{SND}[f; 0, +\infty]$ is denoted by INSP[f].

Let us mention examples as well as relevances to our result. For $T \subseteq V$ with |T| even, define a set function f_T by $f_T(X) := 1$ for $X \subseteq V$ with $|X \cap T|$ odd and $f_T(X) := 0$ for others. Then $\text{INSP}[f_T]$ is the minimum-cost T-join problem (with nonnegative costs). The Edmonds-Johnson theorem [12] says that the LP-relaxation $\text{NSP}[f_T]$ is exact. Namely the integrality holds for $\text{NSP}[f_T]$ with every cost function a. This set function f_T is evenly-normal skew-supermodular. Our theorem asserts the integrality only for tree-metric edge-costs, and that an optimal T-join can be greedily found in this case.

For a positive integer k > 0, define a normal skew-supermodular function f_k by $f_k(X) := k \ (\emptyset \neq X \neq V)$. If k is even, then f_k is evenly-normal. Then $\text{INSP}[f_k]$ is the minimum k-edge-connected subgraph problem. In particular, $\text{INSP}[f_2]$ with the degree constraint is nothing but the traveling salesman problem. Suppose that a is a metric. Then $\text{NSP}[f_2]$ is equivalent to the subtour elimination LP-relaxation of TSP; see [25, 23.12]. Suppose further that a is a tree metric. TSP on a tree is quite easy. An optimal tour is a tour which traces each edge in the tree (at most) twice. This tour in fact coincides with our integral optimal solution in Theorem 1.2.

Consider the case f = R for connectivity requirement $\{r_{ij}\}$ (see (1.3)). Then SND[$R; l, +\infty$] is the connectivity augmentation problem. Frank [6] gave a polynomial time algorithm to SND[$R; l, +\infty$] for node-induced edge-costs. An edge-cost a is called node-induced if there is $b: V \to \mathbf{R}_+$ with

$$a(ij) = b(i) + b(j) \quad (i, j \in V).$$

As a corollary, he proved the half-integrality of $\text{SND}^*[R; l, +\infty]$ for node-induced edgecosts. Actually Frank's argument works for a *proper function* [17, Definition 20.17], which is a symmetric set function f satisfying

(2.1)
$$\max\{f(X), f(Y)\} \ge f(X \cup Y) \quad (X, Y \subseteq V : X \cap Y = \emptyset).$$

See [2] for details. Notice that R is proper. The condition (2.1) is stronger than the normality condition (1.5), and is stronger than the skew-supermodularity (1.4); see [17, Proposition 20.18]. Observe that a node-induced cost function is a tree metric corresponding to a star. So our result extends Frank's half-integrality result in the case of l = 0. Note that Frank's argument is based on the edge-splitting technique, and does not explain the simplicity of the Gomory-Hu algorithm. Note also that our theorem is not applicable to $\text{SND}^*[R; l, +\infty]$ (since the negative of cut function $(X \mapsto \sum_{e \in \delta X} l(e))$ is not normal in general).

In the study of hypergraph connectivity augmentation, Szigeti [23] showed that for an arbitrary skew-supermodular function f there is a half-integral optimal solution in NSP[f] with uniform-cost. His proof is also based on the edge-splitting. We do not know how to find this half-integral solution in polynomial time, since the edge-splitting approach needs to check whether a given $x \in \mathbf{R}^{E(K_V)}$ belongs to Cover(f); see the argument below.

Approximation algorithm of SND[f; l, u] for proper/skew-supermodular functions f has also been extensively studied; see [25, Chapters 22, 23] and [17, Section 20.3]. The integer network synthesis INSP[R] is NP-hard for general edge-cost. The skew-supermodular INSP[f] is NP-hard even if the edge-cost is uniform, since it includes an NP-hard subclass of the NA-connectivity augmentation problem [18]; see [14, Lemma

1.1]. There are two major approximation algorithms for SND[f; l, u]: Jain's 2-approximation algorithm [15] and the primal-dual $2H(f_{\text{max}})$ -approximation algorithm [9], where $f_{\text{max}} :=$ $\max_{X \subset V} f(X)$ and $H(k) := 1 + 1/2 + \cdots + 1/k$. The half-integrality of $SND^*[f; l, u]$ would yield a 2-approximation algorithm for SND[f;l,u]. However $\text{SND}^*[f;l,u]$ does not have the half-integrality in general; see [25, Lemma 23.2] and [17, p. 544–545]. In [15], Jain discovered a weaker property that every basic solution x of $\text{SND}^*[f; l, u]$ has an edge e with $x(e) \ge 1/2$. Based on this property, he devised a 2-approximation algorithm for SND[f; l, u], provided a separation oracle of Cover(f) or a polynomial time algorithm solving LP-relaxation $\text{SND}^*[f; l, u]$ is available. The primal-dual approximation algorithm also needs a feasibility-checking oracle of $\operatorname{Cover}(f)$, an oracle of checking whether a given x belongs to Cover(f). Another notable result is a 7/4-approximation algorithm by Nutov [19] for $\text{SND}[f; l, +\infty]$ with uniform edge-cost. His algorithm also needs a feasibility-checking oracle of Cover(f). For a proper function f (given by an oracle), there is an efficient separation algorithm for Cover(f) [17, Theorem 20.20], and $SND^*[f; l, u]$ can be solved in polynomial time by the ellipsoid method. In addition, if f = R, then the feasibility-check of Cover(R) can be done by any max-flow min-cut algorithm, and $\text{SND}^*[R; l, u]$ has a polynomial-size LP formulation, which can be solved in polynomial time by the interior point method.

For a general skew-supermodular function f (given by an oracle), however, no efficient feasibility-checking/separation algorithm for Cover(f) is known; see [17, p. 534]. This problem is reduced to the problem of maximizing a skew-supermodular function, which is also not known to be (oracle-)tractable; see EGRES Open [13]. Even if the normality condition (1.5) is imposed, we still do not know whether Cover(f) has an efficient separation algorithm, and we do not know whether NSP[f] is solvable in polynomial time. From this point of view, our result might be interesting since it gives a new class of oracle-tractable NSP[f].

Application to approximation algorithm. As is well-known, the half-integrality leads to a 2-approximation algorithm; see [25]. For a half-integral optimal solution x of NSP[f], by rounding up x(e) to $\lceil x(e) \rceil$, we obtain a feasible solution $\lceil x \rceil$ of INSP[f], which is a 2-approximate solution of INSP[f].

Theorem 2.1. Suppose that f is a normal skew-supermodular function given by an evaluation oracle. There is a 2-approximation algorithm for INSP[f] with tree-metric costs.

An interesting point is that this algorithm does not require any feasibility-checking oracle of $\operatorname{Cover}(f)$. Furthermore, by combining Theorem 1.2 with a standard argument of Bartal's probabilistic embedding [1] (see [24, Section 8.5, 8.6]), we obtain a randomized $O(\log n)$ -approximation algorithm for INSP[f] with general cost as follows. We can assume that edge-cost a is a metric, i.e., it satisfies the triangle inequalities $a(ij)+a(jk) \geq$ a(ik) $(i, j, k \in V)$ (see the proof of [25, Theorem 3.2]), and there is no edge e with a(e) = 0 (otherwise, contract all edges e with a(e) = 0). It is shown by [4] that there exists a randomized $O(n^2)$ algorithm to find a tree metric τ with $a(e) \leq \tau(e)$ and $\operatorname{E}[\tau(e)] \leq O(\log n)a(e)$ ($e \in E(K_V)$), where $\operatorname{E}[X]$ is the expected value of a random variable X. More precisely, there is an $O(n^2)$ algorithm to sample a tree metric from the space \mathcal{T} of tree metrics τ dominating a with respect to a probability measure μ on \mathcal{T} satisfying $\operatorname{E}[\tau(e)] = \int_{\tau \in \mathcal{T}} \tau(e) d\mu \leq O(\log n)a(e)$ ($e \in E(K_V)$). Let x^{τ} be a halfintegral optimal solution x of NSP[f] for tree-metric cost τ (obtained by the algorithm in Theorem 1.2). The rounding solution $[x^{\tau}]$ is a 2-approximate solution of INSP[f] with cost τ (by Theorem 2.1), and has the expected objective value at most $O(\log n)$ times the optimal value of INSP[f] with cost a, since

$$\begin{split} & \mathbf{E}\left[\sum_{e}a(e)\lceil x^{\tau}(e)\rceil\right] = \int_{\tau\in\mathcal{T}}\sum_{e}a(e)\lceil x^{\tau}(e)\rceil\mathrm{d}\mu \leq \int_{\tau\in\mathcal{T}}\sum_{e}\tau(e)\lceil x^{\tau}(e)\rceil\mathrm{d}\mu \\ & \leq \int_{\tau\in\mathcal{T}}2\sum_{e}\tau(e)y^{\tau}(e)\mathrm{d}\mu \leq \int_{\tau\in\mathcal{T}}2\sum_{e}\tau(e)y(e)\mathrm{d}\mu = 2\sum_{e}y(e)\int_{\tau\in\mathcal{T}}\tau(e)\mathrm{d}\mu \\ & \leq O(\log n)\sum_{e}a(e)y(e), \end{split}$$

where y^{τ} and y denote optimal solutions of INSP[f] with cost τ and of INSP[f] with cost a, respectively. The same argument implies that $E[\sum a(e)x^{\tau}(e)]$ is at most $O(\log n)$ times the optimal value of NSP[f] with cost a.

Theorem 2.2. Suppose that f is a normal skew-supermodular function given by an evaluation oracle. There exists a randomized $O(\log n)$ -approximation algorithm for NSP[f]and for INSP[f].

Our algorithm for INSP[f] is comparable to the primal-dual $2H(f_{\text{max}})$ -approximation algorithm in the case where f_{max} is a polynomial of the number n of nodes, and is of course much inferior than Jain's algorithm in approximation factor. Also our algorithm is not extendable to SND[f; l, u]. However our algorithm works only with an evaluation oracle of f, and is considerably fast. For the special case of f = R, Jain's algorithm needs to solve the LP-relaxation SND* in each step. This is quite costly, and almost impossible for a large instance; the running time of Jain's algorithm is beyond $O(n^6)$, as estimated in [15, Section 8]. Note also that the running time of the primal-dual approximation algorithm is beyond $O((f_{\text{max}})^2n^2)$; see [17, p. 539]. On the other hand, the running time of our algorithm is $O(n^2)$ par one trial. So our algorithm may also be useful to obtain a good initial feasible solution for local search heuristics, e.g., [22]. An experimental study will be given in a future work.

3 Proof

We need two lemmas. The first lemma is a general property of a symmetric skewsupermodular function. We denote $\sum_{e \in F} x(e)$ by x(F) for $F \subseteq E(K_V)$.

Lemma 3.1. Let $f : 2^V \to \mathbb{Z}_+$ be a symmetric skew-supermodular function and \mathcal{F} a cross-free family on V. If $x : E(K_V) \to \mathbb{R}_+$ satisfies $x(\delta X) = f(X)$ for all $X \in \mathcal{F}$, then one of the following holds:

- (1) x satisfies $x(\delta X) \ge f(X)$ for all $X \subseteq V$.
- (2) There exists $W \subseteq V$ such that $x(\delta W) < f(W)$ and $\mathcal{F} \cup \{W\}$ is cross-free.

In particular, if \mathcal{F} is a maximal cross-free family, then (1) holds.

Proof. By symmetry, we may assume $Y \in \mathcal{F} \Leftrightarrow V \setminus Y \in \mathcal{F}$. Suppose that (1) does not hold. Then there is $Z \subseteq V$ with $x(\delta Z) < f(Z)$. Take such a $Z \subseteq V$ such that the crossing number $N_Z := |\{X \in \mathcal{F} \mid Z \text{ and } X \text{ are crossing}\}|$ is minimum, where X and Y are said to be *crossing* if all $X \cap Y$, $V \setminus (X \cup Y)$, $X \setminus Y$, and $Y \setminus X$ are nonempty. If $N_Z = 0$, we are done. Suppose not. Take $Y \in \mathcal{F}$ such that Z and Y are crossing. By the skew-supermodularity of f, we have

$$f(Y) + f(Z) \le f(Y \cap Z) + f(Y \cup Z) \text{ or } f(Y) + f(Z) \le f(Y \setminus Z) + f(Z \setminus Y).$$

By symmetry, we may assume the first case; otherwise replace Y by $V \setminus Y$. By $x(\delta Y) = f(Y)$ and $x(\delta Z) < f(Z)$, we have

$$x(\delta Y) + x(\delta Z) < f(Y) + f(Z) \le f(Y \cap Z) + f(Y \cup Z).$$

By $x \ge 0$, we have $x(\delta(Y \cap Z)) + x(\delta(Y \cup Z)) \le x(\delta Y) + x(\delta Z)$. Thus $x(\delta(Y \cap Z)) < f(Y \cap Z)$ or $x(\delta(Y \cup Z)) < f(Y \cup Z)$. Again, by symmetry, we may assume $x(\delta(Y \cap Z)) < f(Y \cap Z)$; otherwise replace Y by $V \setminus Y$ and replace Z by $V \setminus Z$.

Then $N_{Y \cap Z} < N_Z$ (see [25, Lemma 23.15]), and this contradicts the minimality assumption.

The second lemma is about the path decomposition of a capacitated trivalent tree. A tree is said to be *trivalent* if each node that is not a leaf has degree three, where a *leaf* of a tree is a node of degree one.

Lemma 3.2. Let T be a trivalent tree, and $c : E(T) \to \mathbf{Z}_+$ an integer-valued edgecapacity. If $c(e) + c(e') - c(e'') \in 2\mathbf{Z}_+$ holds for every pairwise-incident triple (e, e', e'')of edges, then there exists a pair (\mathcal{P}, λ) of a set \mathcal{P} of simple paths connecting leaves and an integral weight $\lambda : \mathcal{P} \to \mathbf{Z}_+$ such that $\sum_{P \in \mathcal{P}} \lambda(P) \mathbf{1}_{E(P)} = c$.

Proof. For every incident pair e, e' of edges, define l(e, e') by

$$l(e, e') := (c(e) + c(e') - c(e''))/2,$$

where e'' is the third edge incident to e and to e'. Then l(e, e') is a nonnegative integer, and c(e) = l(e, e') + l(e, e''). (\mathcal{P}, λ) is constructed as follows.

Let $\mathcal{P} := \emptyset$ initially. Take edge e = uv with c(e) > 0. Suppose that u is not a leaf. Then there is an edge e' incident to u with l(e, e') > 0. Necessarily c(e') > 0 (otherwise c(e') = 0 and l(e, e') = 0). Hence we can extend e to a simple path $P = (e_0, e_1, \ldots, e_k)$ connecting leaves. Add P to \mathcal{P} . Define $\lambda(P) := \min_{i=1,\ldots,k} l(e_{i-1}, e_i) > 0$. Let $\tilde{c} := c - \lambda(P) \mathbf{1}_{E(P)}$. Then \tilde{c} satisfies the condition of this lemma. To see this, take an arbitrary pairwise-incident triple (e, e', e'') of edges. We show $\tilde{c}(e) + \tilde{c}(e') - \tilde{c}(e'') \in 2\mathbf{Z}_+$. Here $E(P) \cap \{e, e', e''\}$ is \emptyset , $\{e', e''\}$, $\{e, e''\}$, or $\{e, e'\}$. For the first three cases, we have $\tilde{c}(e) + \tilde{c}(e') - \tilde{c}(e'') = c(e) + c(e') - c(e'') \in 2\mathbf{Z}_+$. For the last case, we have $\tilde{c}(e) + \tilde{c}(e') - \tilde{c}(e'') = c(e) + c(e') - c(e'') = 2\lambda(P)$, which must be a nonnegative even integer by definition of $\lambda(P)$.

Let $c \leftarrow \tilde{c}$, and repeat this process. In each step, at least one of l(e, e') is zero. After O(|V(T)|) step, we have c = 0 and obtain a desired (\mathcal{P}, λ) .

Proof of Theorem 1.2. Consider the LP-dual of NSP[f], which is given by

DualNSP[f]: Max.
$$\sum_{X \subseteq V} \pi(X) f(X)$$

s.t.
$$\sum_{X \subseteq V} \pi(X) \mathbf{1}_{\delta X} \leq a$$
$$\pi : 2^V \to \mathbf{R}_+.$$

Suppose that a is represented by $a = \sum_{X \in \mathcal{F}} l(X) \mathbf{1}_{\delta X}$ for some cross-free family \mathcal{F} and some nonnegative weight l on \mathcal{F} . Define $\pi : 2^V \to \mathbf{R}_+$ by

$$\pi(X) = \begin{cases} l(X) & \text{if } X \in \mathcal{F}, \\ 0 & \text{otherwise,} \end{cases} \quad (X \subseteq V).$$

Then π is feasible to DualNSP[f] with the objective value $\sum_{X \in \mathcal{F}} l(X) f(X)$. We are going to construct a feasible integral solution x in NSP[f] satisfying

(3.1)
$$x(\delta X) = f(X) \quad (X \in \mathcal{F}).$$

If this is possible, then, by the complementary slackness, x is optimal to NSP[f] and π is optimal to DualNSP[f]; hence Theorem 1.2 is proved.

Take a maximal cross-free family \mathcal{F}^* including \mathcal{F} . Here recall the tree-representation of a cross-free family; see [7, Section 1.4] and [21, Section 13.4]. By the maximality of \mathcal{F}^* , there exists a trivalent tree T on vertex set $V \cup I$ with the following properties:

(3.2) (1) V is the set of leaves of T, and I is the set of non-leaf nodes.

(2) $\mathcal{F}^* \setminus \{\emptyset, V\} = \bigcup_{e \in E(T)} \{A_e, B_e\}$, where $\{A_e, B_e\}$ denotes the bipartition of V such that A_e (or B_e) is the set of leaves of one of components of T - e.

Define edge-weight $c: E(T) \to \mathbf{Z}_+$ by

(3.3)
$$c(e) := f(A_e)(=f(B_e)) \quad (e \in E(T)).$$

By symmetry (1.1) and the evenly-normal property (1.6) of f, for each pairwise-incident triple (e, e', e'') of edges in T, we have

$$c(e) + c(e') - c(e'') = f(A_e) + f(A_{e'}) - f(A_{e''}) \in 2\mathbf{Z}_+$$

where we can assume $A_e \cap A_{e'} = \emptyset$ and $A_{e''} = A_e \cup A_{e'}$. By Lemma 3.2, there exists a pair (\mathcal{P}, λ) of a set \mathcal{P} of simple paths connecting V and a positive integral weight λ on \mathcal{P} with $\sum_{P \in \mathcal{P}} \lambda(P) \mathbf{1}_{E(P)} = c$. Define $x : E(K_V) \to \mathbf{Z}_+$ by

(3.4)
$$x(ij) := \begin{cases} \lambda(P) & \text{if } \exists P \in \mathcal{P} : P \text{ connects } i \text{ and } j, \\ 0 & \text{otherwise,} \end{cases} \quad (ij \in E(K_V)).$$

Since each P is simple, we have

$$x(\delta A_e) = c(e) = f(A_e) \quad (e \in E(T)).$$

By (3.2) (2), this implies

$$x(\delta X) = f(X) \quad (X \in \mathcal{F}^*).$$

By Lemma 3.1, x is feasible to NSP[f]. By $\mathcal{F} \subseteq \mathcal{F}^*$, x satisfies (3.1). Therefore, x is an integral optimal solution in NSP[f], π is an optimal solution in DualNSP[f], and the optimal value is equal to $\sum_{X \in \mathcal{F}} l(X) \mathbf{1}_{\delta X}$. \Box

Algorithm to find an integral optimal solution in Theorem 1.2. Our proof gives the following $O(n\theta + n^2)$ algorithm to find an integral optimal solution, where n := |V|, and θ denotes the running time of an oracle of f.

step 1: Take a maximal cross-free family \mathcal{F}^* including \mathcal{F} .

step 2: Construct a trivalent tree T with (3.2).

step 3: Define edge-weight c by (3.3).

step 4: Decompose c as $c = \sum_{P \in \mathcal{P}} \lambda(P) \mathbf{1}_{E(P)}$ according to the proof of Lemma 3.2.

step 5: Define x by (3.4), and then x is an integral optimal solution in NSP[f].

Steps 1,2 can be done in O(n) time, step 3 can be done by O(n) calls of f, and steps 4,5 can be done in $O(n^2)$ time.

Gomory-Hu algorithm reconsidered. The Gomory-Hu algorithm can be viewed as a special case of our algorithm. First note that, in the case of unit cost, we can take an arbitrary maximal cross-free family in step 1. Consider a dominant requirement tree T with respect to r. For $e \in E(T)$, let $\{A_e, B_e\}$ denote the bipartition of V determined by T - e. Then $\mathcal{F} := \bigcup_{e \in E(T)} \{A_e, B_e\}$ is cross-free. Extend \mathcal{F} to a maximal cross-free family \mathcal{F}^* . Take a trivalent tree \overline{T} corresponding to \mathcal{F}^* . Define $c : E(\overline{T}) \to \mathbb{Z}_+$ by (3.3) with f := R. Recall that R is proper, i.e., it satisfies (2.1). By symmetry, the maximum of R(A), R(B), and $R(A \cup B)$ is attained at least twice. This implies the following property of c:

(3.5) For each pairwise-incident triple (e, e', e'') of edges, the maximum of c(e), c(e'), and c(e'') is attained at least twice.

Decompose c as $c = \sum_{F \in \bar{\mathcal{G}}} \sigma(F) \mathbf{1}_{E(F)}$ for a family of subtrees $\bar{\mathcal{G}}$ and a positive integral weight σ on $\bar{\mathcal{G}}$ with the property (*) in the step 3 of the Gomory-Hu algorithm. By (3.5), the set of leaves of each subtree $F \in \bar{\mathcal{G}}$ belongs to V. Therefore we may apply the path decomposition in Lemma 3.2 to each $\sigma(F)\mathbf{1}_{E(F)}$ independently. From the path decomposition of $\sigma(F)\mathbf{1}_{E(F)}$, define x_F by $x_F := (\sigma(F)/2)\mathbf{1}_{E(C_F)}$ if $|V(F)| \geq 3$ and $x_F := \sigma(F)\mathbf{1}_{E(C_F)}$ if |V(F)| = 2, where a cycle C_F of vertices V(F) in K_V . Then $x := \sum_{F \in \bar{\mathcal{G}}} x_F$ is optimal.

By construction, T can be regarded as a tree obtained by contracting some of edges of \overline{T} . So we can regard E(T) as $E(T) \subseteq E(\overline{T})$. Since T is a maximum spanning tree, we have

$$r(e) = R(A_e)(=R(B_e)) \quad (e \in E(T)).$$

This means that r coincides with the restriction of c to E(T). Also one can see from the definition of R that the family obtained from $\overline{\mathcal{G}}$ by contracting the edges coincides with the family \mathcal{G} in the Gomory-Hu algorithm (see Introduction). Therefore, the abovementioned process coincides with the Gomory-Hu algorithm.

Remark 3.3. Lemma 3.1 is viewed as a symmetric analogue of the following wellproperty of submodular functions: If f is a submodular function on V and $x : V \to \mathbf{R}$ satisfies x(Y) = f(Y) ($Y \in \mathcal{F}$) for some maximal chain \mathcal{F} in 2^V , then $x(X) \leq f(X)$ for all $X \subseteq V$. See [7, 8, 21]. This property guarantees the correctness of the greedy algorithm for the base polytope. Also in our algorithm, Lemma 3.1 is used for a similar purpose. So our algorithm may be a symmetric analogue of the greedy algorithm.

Acknowledgments

We thank referees for helpful comments; the proof of Lemma 3.1 was simplified by a suggestion of a referee. We learned some of bibliographical information from the lectures given by Toshimasa Ishii at July 2013. The second author is partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and is partially supported by Aihara Project, the FIRST program from JSPS.

References

 Y. Bartal, Probabilistic approximations of metric spaces and its algorithmic applications, in: Proceedings of the 37th Annual Symposium on Foundations of Computer Science (FOCS 96), 184–193, IEEE Computer Society Press, Los Alamitos, California, 1996.

- [2] A. Bernáth, T. Király, and L. Végh, Special skew-supermodular functions and a generalization of Mader's splitting-off theorem, EGRES Technical Report no. 2011-10, (2011).
- [3] A. Dress, K.T. Huber, J. Koolen, V. Moulton, and A. Spillner, *Basic Phylogenetic Combi*natorics, Cambridge University Press, Cambridge, 2012.
- [4] J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbitrary metrics by tree metrics, *Journal of Computer and System Sciences* 69 (2004) 485–497.
- [5] L. R. Ford, Jr. and D. R. Fulkerson, *Flows in Networks*, Princeton University Press, Princeton, 1962.
- [6] A. Frank, Augmenting graphs to meet edge-connectivity requirements. SIAM Journal on Discrete Mathematics 5 (1992), 25–53.
- [7] A. Frank, Connections in Combinatorial Optimization, Oxford University Press, Oxford, 2011.
- [8] S. Fujishige, Submodular Functions and Optimization, 2nd Edition, Elsevier, Amsterdam, 2005.
- [9] M.X. Goemans, D.B. Shmoys, A.V. Goldberg, É. Tardos, S. Plotkin, and D. P. Williamson, Improved approximation algorithms for network design problems, In *Proceedings of the Fifth* Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '94), ACM, New York, 1994.
- [10] R. E. Gomory and T. C. Hu, Multi-terminal network flows, Journal of the Society for Industrial and Applied Mathematics 9 (1961), 551–570.
- [11] R. E. Gomory and T. C. Hu, An application of generalized linear programming to network flows, Journal of the Society for Industrial and Applied Mathematics 10 (1962) 260–283.
- [12] J. Edmonds and E. L. Johnson, Matching, Euler tours and the Chinese postman, Mathematical Programming 5 (1973), 88–124.
- [13] EGRES Open, http://lemon.cs.elte.hu/egres/open/Main_Page.
- [14] T. Ishii, Y. Akiyama, and H. Nagamochi, Minimum augmentation of edge-connectivity between vertices and sets of vertices in undirected graphs, *Algorithmica* 56 (2010), 413–436.
- [15] K. Jain, A factor 2 approximation algorithm for the generalized Steiner network problem, Combinatorica 21 (2001), 39–60.
- [16] D. Jungnickel, Graphs, Networks and Algorithms, Fourth Edition, Springer-Verlag, Berlin, 2013.
- [17] B. Korte and J. Vygen, Combinatorial Optimization, Fifth Edition, Springer-Verlag, Berlin, 2012.
- [18] H. Miwa and H. Ito, NA-edge-connectivity augmentation problems by adding edges, Journal of the Operations Research Society of Japan 47 (2004), 224–243.
- [19] Z. Nutov, Approximating connectivity augmentation problems, ACM Transactions on Algorithms 6, (2009), Article No. 5.
- [20] N. Saitou and M. Nei, The neighbor-joining method: A new method for reconstructing phylogenetic trees, *Molecular Biology and Evolution* 4 (1987), 406–425.
- [21] A. Schrijver, Combinatorial Optimization, Springer-Verlag, Berlin, 2003.
- [22] K. Steiglitz, P. Weiner, and D. J. Kleitman, The design of minimum-cost survivable networks, *IEEE Transactions on Circuit Theory*, CT-16, 1969, 455–460.

- [23] Z. Szigeti, Hypergraph connectivity augmentation. Mathematical Programing, Series B 84 (1999), 519–527.
- [24] D. P. Williamson and D. B. Shmoys, *The Design of Approximation Algorithms*, Cambridge University Press, Cambridge, 2011.
- [25] V. V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin, 2001.