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TX-Approaches to Multiflows and Metrics

By

Hiroshi Hirai∗

Abstract

This paper is an exposition of a unified approach to multiflow problems using certain

polyhedral objects called tight spans or TX-spaces. The tight span was introduced by Isbell

and Dress, independent on the multiflow research. In the middle of 90’s, Karzanov and Chepoi

explored the significance of tight spans in the multiflow theory. We explain how the tight span

derives min-max relations to multiflow problems and how its geometry affects discreteness

issues of flows and potentials.

§ 1. Introduction

This paper is an exposition of a unified approach to multiflow problems using certain
polyhedral objects called tight spans or TX-spaces. The tight span was introduced by
Isbell [17] and Dress [7] for a metric, independent on the multiflow research. By a metric
µ on a set S we mean a function defined S × S satisfying µ(s, t) = µ(t, s) ≥ µ(s, s) = 0
and the triangle inequality µ(s, t)+µ(t, u) ≥ µ(s, t) for s, t, u ∈ S. The tight span Tµ for
µ is defined to be the set of (pointwise) minimal elements of the unbounded polyhedron

(1.1) Pµ = {p ∈ RS | p(s) + p(t) ≥ µ(s, t) (s, t ∈ S)}.

Although a duality relationship between multiflows and metrics was known in 70’s [16,
28], it was the middle of 90’s when the significance of tight spans in the multiflow theory
was revealed by Karzanov [22, 23] and Chepoi [3]. Recently, the author [10] considered
the tight span of a possibly nonmetric distance µ, where by a distance µ we mean a
function on S × S satisfying only µ(s, t) = µ(t, s) ≥ µ(s, s) = 0 for s, t ∈ S. The
subsequent paper [11] showed that nonmetric tight spans provide general combinatorial
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duality relations for weighted maximum multiflow problems, unifying previously known
results for 0-1-weighted and metric-weighted maximum multiflow problems [19, 23]. In
this paper, following [11] (and [12]), we explain how the tight span Tµ derives such a
combinatorial min-max relation in multiflow problems and how geometry of Tµ affects
discreteness issues of flows and potentials.

We begin with introducing basic notions. Let G be an undirected graph with
nonnegative edge capacity c : EG → R+. Let S ⊆ V G be the set of terminals. A set
P of paths in G whose ends belong to S together with nonnegative flow-value function
λ : P → R+ is called a multiflow of (G, c) if it satisfies the capacity constraint

(1.2)
∑

P∈P:e∈P

λ(P ) ≤ c(e) (e ∈ EG).

This paper mainly deals with the following multiflow maximization problems. For a
distance µ on terminals S, the µ-weighted maximum multiflow problem (µ-problem) is
formulated as follows:

(1.3) Maximize
∑
P∈P

µ(sP , tP )λ(P ) over multiflow (P, λ) for (G, c),

where sP , tP are the ends of P . µ-problems contain several basic multiflow problems. In
particular, the 0-1 case is of particular combinatorial interest. In this case, 0-1 distance
µ is regarded as the commodity graph, and µ-problem is the problem of maximizing
the total sum of multiflows connecting pairs of terminals specified by µ(s, t) = 1. For
example, the case where S is a 2-set {s, t} with µ(s, t) = 1 corresponds to the single-
commodity flow problem. The case where S is a 4-set {s, t, s′, t′} and µ(s, t) = µ(s′, t′) =
1 and others are zero corresponds to the two-commodity flow problem. The case of
µ(s, t) = 1 for all distinct s, t ∈ S is called the free multiflow problem. In the three cases
above, there are combinatorial duality relations: Ford-Fulkerson’s max-flow min-cut
theorem [8], Hu’s max-biflow min-cut theorem [14], and Lovász-Cherkassky’s duality
theorem [4, 26].

A TX -approach we would like to describe here gives a unified derivation to such
duality relations. The core of this approach is to consider the following continuous
location problem on the tight span Tµ endowed with the l∞-distance:

Minimize
∑

xy∈EG

c(xy)‖ρ(x) − ρ(y)‖∞(1.4)

subject to ρ : V G → Tµ,

ρ(s) ∈ Tµ,s (s ∈ S),
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where the sets Tµ, Tµ,s ⊆ RS are defined by

Pµ = {p ∈ RS | p(s) + p(t) ≥ µ(s, t) (s, t ∈ S)},(1.5)

Tµ = the set of minimal elements of Pµ,(1.6)

Tµ,s = {p ∈ Tµ | p(s) = 0} (s ∈ S).(1.7)

We call the problem (1.4) the tight-span-dual (T -dual) to µ-problem. In analogy to the
network flow theory, we call ρ in T -dual (1.4) a potential. T -dual is indeed a dual of
µ-problem as follows.

Theorem 1.1 ([11]). The maximum value of µ-problem is equal to the minimum
value of T -dual.

Furthermore, if dimTµ ≤ 2, then T -dual can be discretized as follows.

Theorem 1.2 ([11]). If µ is a rational distance with dim Tµ ≤ 2, then there
exists a finite set Z in Tµ such that for every graph (G, c) with S ⊆ V G we can take an
optimal potential ρ in T -dual with ρ(V G) ⊆ Z.

Namely, if dimTµ ≤ 2, then T -dual is reduced to the following discrete location
problem:

Minimize
∑

xy∈EG

c(xy)‖ρ(x) − ρ(y)‖∞(1.8)

subject to ρ : V G → Tµ ∩ Z,

ρ(s) ∈ Tµ,s ∩ Z (s ∈ S).

This might be regarded as an analogous phenomenon of the discreteness of potential
in the network flow theory, and gives a general combinatorial duality relation for µ-
problems with dim Tµ ≤ 2, which includes max-flow min-cut theorem, max-biflow min-
cut theorem, and so on. This duality relation was recognized in the case of metrics
µ [22, 23]. The main contribution of [11] is to extended it to general distances µ.

This paper is organized as follows. In Section 2, we prove Theorem 1.1. In Section 3,
we illustrate several examples of T -dual to explain how T -dual derives combinatorial
duality relations. In Section 4, we give a sketch of the proof of Theorem 1.2 with
emphasis on a geometric intuition. In Section 5, we explain an application of tight
spans to metric packing problems, which are dual to multiflow feasibility problems. In
Section 6, we describe related issues, future research directions, and open questions.

Notation R, R+, and Z denote the sets of reals, nonnegative reals, and integers,
respectively. For a set S, the characteristic vector χS is defined as: χS(s) = 1 for
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s ∈ S and χS(t) = 0 for t 6∈ S. We simply denote χ{s} by χs. For a graph G, V G

and EG denote the sets of vertices and edges of G, respectively. For a graph G, distG

is the graph metric on V G induced by G. A subgraph G′ of G is called isometric if
distG′(x, y) = distG(x, y) for x, y ∈ V G′. We use the basic terminology in the polytope
theory, such as faces, extreme points, polyhedral subdivisions; see [33]. We call a k-
dimensional face a k-face.

§ 2. T -dual to maximum multiflow problems

In this section, we prove Theorem 1.1. It is known that the LP-dual of µ-problem
is given by the following:

Minimize
∑

xy∈EG

c(xy)d(x, y)(2.1)

subject to d : metric on V G,

d(s, t) ≥ µ(s, t) (s, t ∈ S).

This is a variant of the so-called Japanese theorem due to Onaga and Kakusho [28]
and Iri [16]. We show that (2.1) is reduced to T -dual (1.4). The proof consists of two
lemmas. The first lemma states that LP-dual (2.1) is reduced to a location problem on
Pµ.

Lemma 2.1. The optimal value of µ-problem is equal to the minimum value of
the following problem:

Minimize
∑

xy∈EG

c(xy)‖ρ(x) − ρ(y)‖∞(2.2)

subject to ρ : V G → Pµ,

ρ(s) ∈ Pµ,s (s ∈ S),

where the subset Pµ,s ⊆ Pµ for s ∈ S is defined by

(2.3) Pµ,s = {p ∈ Pµ | p(s) = 0}.

Proof. For ρ : V G → Pµ with ρ(s) ∈ Pµ,s (s ∈ S), define a metric dρ on V G by

(2.4) dρ(x, y) = ‖ρ(x) − ρ(y)‖∞ (x, y ∈ V G).

Then we easily see that dρ is feasible to (2.1). Conversely, take a metric d feasible
to (2.1). Define a map ρd : V G → RS by

(2.5) (ρd(x))(s) = d(s, x) (s ∈ S, x ∈ V G).
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By definition of ρd(x) and the triangle inequality, ρd is feasible to (2.2). Furthermore,
the triangle inequality d(x, y) ≥ |d(x, s) − d(s, y)| implies d(x, y) ≥ ‖ρd(x) − ρd(y)‖∞.
The nonnegativity of c implies

(2.6)
∑

xy∈EG

c(xy)d(x, y) ≥
∑

xy∈EG

c(xy)‖ρd(x) − ρd(y)‖∞.

Thus we can always take an optimal solution of (2.1) as dρ for some potential ρ in
(1.4).

The second lemma, due to Dress, states the existence of a nonexpansive retraction
from Pµ to Tµ.

Lemma 2.2 ([7, p.331,(1.9)]). There is a map φ : Pµ → Tµ such that

(1) ‖φ(p) − φ(q)‖∞ ≤ ‖p − q‖∞ for p, q ∈ Pµ, and

(2) φ(p) ≤ p for p ∈ Pµ, and thus φ is identical on Tµ.

Sketch of the proof. For s ∈ S, define φs : Pµ → Pµ by

(2.7) φs(p) := p − χs max{ε ≥ 0 | p − εχs ∈ Pµ}.

Then, one can show that φs satisfies (1-2). Let S = {s1, s2, . . . , sm}. Then the map

(2.8) φsm ◦ φsm−1 ◦ · · · ◦ φs1

is a desired one.

Since c is nonnegative, by Lemma 2.2, we can always take an optimal solution of
(2.2) from potentials in T -dual (1.4). Thus we obtain Theorem 1.1. By the proof of
Lemma 2.1, the relationship between LP-dual (2.2) and T -dual (1.4) is given as follows:

• For a metric d minimal in the feasible region of LP-dual (2.2), the map ρd defined
by

(2.9) (ρd(x))(s) = d(s, x) (x ∈ V G, s ∈ S)

is a potential in T -dual (1.4).

• For a potential ρ in T -dual (1.4), a metric dρ defined by

(2.10) dρ(x, y) = ‖ρ(x) − ρ(y)‖∞ (x, y ∈ V G)

is feasible to LP-dual (2.2).
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We end this section with listing basic properties of Tµ.

Lemma 2.3.

(1) (Tµ, l∞) is geodesic, i.e., for p, q ∈ Tµ there is a path in Tµ of length ‖p − q‖∞.

(2) µ(s, t) = inf{‖p − q‖∞ | p ∈ Tµ,s, q ∈ Tµ,t} for s, t ∈ S.

(3) If µ is a metric, then Tµ,s is a single point µs defined by

(2.11) µs(t) = µ(s, t) (t ∈ S),

i.e., µs is the s-th row vector of µ.

(4) p(s) = inf{‖p − q‖∞ | q ∈ Tµ,s} for p ∈ Tµ and s ∈ S.

(5) |p(s) − p(t)| ≤ µ(s, t) for p ∈ Tµ and s, t ∈ S.

(1) is an easy corollary of Lemma 2.2. (2-3) were shown in [10] and (4) was shown
in [11]. (4) follows from (1) and (3). They are extensions of [7, Theorem 2 (i), (ii),
and (iv)]. The properties (2-3) mean that µ is isometrically embedded into Tµ as the
l1-distance among subsets Tµ,s.

§ 3. Some examples

In this section, we explain how T -duals derive combinatorial duality relations in
multiflow maximization problems. The message of this section is:

The shape of Tµ is a min-max formula of µ-problem.

§ 3.1. Single commodity flows

The first example is well-known single commodity flow problem. In this case, the
terminal S is a 2-set {s, t}, and µ(s, t) = 1. Therefore, Pµ is an unbounded polyhedron
in the plane, Tµ is the segment, and Tµ,s = {χt} and Tµ,t = {χs} are the endpoints of
the segment; see Figure 1 (a). Therefore, T -dual is equivalent to the following problem:

Minimize
∑

xy∈EG

c(xy)|ρ(x) − ρ(y)|(3.1)

subject to ρ : V G → [0, 1], ρ(s) = 0, ρ(t) = 1.

Namely, ρ is an ordinary (scalar) potential. This problem can be discretized into the
minimum cut problem as follows. We can easily see that for any map ρ : V G → [0, 1],
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Tµ

p(s)

p(t)

p(u)

Tµ,u Tµ,t

Tµ,s

µ =

s t u

s 0 1 1

t 1 0 1

u 1 1 0

Tµ,t

Pµ

p(s) + p(t) ≥ 1

p(s) ≥ 0

p(t) ≥ 0

Tµ

p(t)

p(s)

Tµ,s

O O

(a) (b)

Pµ

1/2

Figure 1. (a) Tµ of a 2-point distance and (b) Tµ of all-one 3-point distance

the corresponding metric dρ can be represented as a convex combination of {dρi}i∈I for
maps ρi : V → {0, 1}. Therefore, (3.1) is discretized into

Minimize
∑

xy∈EG

c(xy)|ρ(x) − ρ(y)|(3.2)

subject to ρ : V G → {0, 1}, ρ(s) = 0, ρ(t) = 1.

This is nothing but the minimum cut problem. Then we obtain Ford-Fulkerson’s max-
flow min-cut theorem (without integrality of optimal flows).

§ 3.2. Free multiflows

The second example we consider is the free multiflow problem. The corresponding
distance µ is all-one distance, that is, µ(s, t) = 1 for distinct s, t ∈ S. Then Tµ is a
star having the center 1/2χS , #S leafs Tµ,s = {χS\s} (s ∈ S), and edge length 1/2;
see Figure 1 (b) for the three terminal case. By the argument similar to the previous
single flow example, T -dual is discretized into the discrete location problem on the star
as follows. Let Γ be the graph of 1-skeleton of Tµ, which is the star with the center
pO = 1/2χS and the leafs ps = χS\s (s ∈ S). Then T -dual is reduced to:

Minimize
1
2

∑
xy∈EG

c(xy)distΓ (x, y)(3.3)

subject to ρ : V G → V Γ, ρ(s) = ps (s ∈ S).
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Tµ,s

Tµ,t

Tµ,t′Tµ,s′

(R2, l∞)

Tµ

(R2, l1)

Tµ,t Tµ,t′

Tµ,sTµ,s′

ptt′

pst′

pO

pss′

ps′t

(a) (b) (c)

Tµ

Γ

1/2

Figure 2. Two-commodity tight span

From this, we obtain Lovász-Cherkassky duality relation (without half-integrality of
optimal flows):

the optimal multiflow value =
1
2

∑
t∈S

{t-S \ t minimum cut value}.(3.4)

§ 3.3. Two-commodity flows

The third example is the two-commodity flow maximization problem. This case
corresponds to: S is a 4-set {s, s′, t, t′}, and µ(s, t) = µ(s′, t′) = 1 and others are
zero. Then Pµ is a 4-dimensional polyhedron, and thus we cannot draw it. Its minimal
element Tµ, however, is 2-dimensional. Indeed, an easy calculation shows

(3.5) Tµ = 1/2χS + {a(χs − χt) + b(χs′ − χt′) | −1/2 ≤ a, b ≤ 1/2}.

Therefore Tµ is isomorphic to the unit square in the l∞-plane (R2, l∞) by projection
to R{s,s′}, and Tµ,s (s ∈ S) are its four edges; see Figure 2 (a). We show that T -dual
in this case is also discretized. Recall the well-known fact that the l∞-plane (R2, l∞) is
isomorphic to the l1-plane (R2, l1) by 45 degree location

(3.6) (x1, x2) 7→ (
x1 + x2

2
,
x1 − x2

2
).

By the map, Tµ is isomorphic to the square in the l1-plane; see Figure 2 (b). We can
subdivide Tµ into four isosceles right triangles with its shorter edges parallel to l1-axes
as in Figure 2 (c), where l1-axes mean vectors (1, 1) and (1,−1) in (R2, l∞) or (0, 1)
and (1, 0) in (R2, l1). This subdivision is denoted by ∆. Let Γ be the graph formed by
the shorter edges of these four triangles. The graph Γ is a star with the center pO and
four leafs pss′

, pst′ , pts′
, ptt′ and edge lengths are 1/2. Then T -dual is again reduced to
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+=⇒

orbit
(Tµ, ρ)

1

4
(Tµ, ∆, ρ′′)

3

4
(Tµ, ∆

3, ρ′)(Tµ, ∆
4, ρ)

Figure 3. Subdividing and decomposing Tµ

the discrete location problem on Γ :

Minimize
1
2

∑
xy∈EG

c(xy)distΓ (x, y)(3.7)

subject to ρ : V G → V Γ,

ρ(s) ∈ {pss′
, pst′}, ρ(s′) ∈ {pss′

, pts′
},

ρ(t) ∈ {pts′
, ptt′}, ρ(t′) ∈ {pst′ , ptt′}.

Indeed, for any (rational) potential ρ : V G → Tµ, the corresponding metric dρ defined
by (2.10) can be represented as a convex combination of dρi (i ∈ I) for potentials ρi

satisfying the constraints of (3.7). We give an intuitive proof of this fact by using
illustrations. We may assume that the image of ρ is rational. Then we can further
subdivide Tµ into 1/k-smaller squares and isosceles right triangles so that the image of
ρ lies on the vertices of this subdivision as in Figure 3. This subdivision is denoted by
∆k. We choose a set O of edges, called an orbit, of this subdivision by the following
way. Take an arbitrary edge e of this subdivision, and set O = {e}. If there is a square
having e′ ∈ O and e′′ 6∈ O as a parallel pair of edges, then set O ← O ∪ {e′′}. If there
is a triangle having e′ ∈ O and e′′ 6∈ O, then set O ← O ∪ {e′′}. Then all edges are
partitioned into k orbits.

Contract all edges in O. Then we obtain (k−1)/kTµ. Expand it in factor k/(k−1).
From this, we obtain a feasible potential ρ′ : V G → Tµ whose the image lies on the
vertices of the subdivision ∆k−1. We construct one more potential. Contract all edges
not in O. Then we obtain 1/kTµ. Expand it in factor k. From this, we obtain a potential
ρ′ : V G → Tµ whose the image lies on the vertices of ∆. Then one can easily see that

(3.8) dρ =
k − 1

k
dρ′

+
1
k

dρ′′
.

Repeat this process to ρ′. We obtain a desired convex combination.
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Moreover, we can take an optimum ρ satisfying (ρ(s), ρ(t)) = (ρ(s′), ρ(t′)) =
(pss′

, ptt′) or (ρ(s), ρ(t)) = (ρ(t′), ρ(s′)) = (pst′ , pts′
). From this, we obtain Hu’s max-

biflow min-cut theorem [14] (without half-integrality of optimal flows):

the optimal multiflow value(3.9)

= min{ss′-tt′ mincut value, st′-ts′ mincut value}.

§ 4. Geometry of Tµ and a general combinatorial min-max formula

In this section, we explain the constriction of Z in Theorem 1.2. The essential
idea has already been described in the two-commodity example in Section 3.3. Namely,
subdivide Tµ into squares and isosceles right triangles. Then we can take Z to be vertices
of this subdivision. The following two propositions guarantee that this approach indeed
works. The first one concerns the shape of 2-faces of Tµ.

Proposition 4.1. Let F be a 2-face of Tµ. Then the metric space (F, l∞) is
isomorphic to the polygon Q in the l∞-plane represented as

(4.1) Q =

{
(x1, x2) ∈ R2

∣∣∣∣ a1 ≤ x1 ≤ a′
1, b ≤ x1 + x2 ≤ b′,

a2 ≤ x2 ≤ a′
2, c ≤ x1 − x2 ≤ c′

}

for some a1, a
′
1, a2, a

′
2, b, b

′, c, c′ ∈ R. Moreover, the isometry is given by the projection
RS → R{s,t} for some s, t ∈ S.

A polygon represented as (4.1) is exactly a convex polygon each of whose edges
is parallel to one of the four vectors (1, 0), (0, 1), (1, 1), (1,−1). Recall that the l∞-
plane is the l1-plane. By the map (x1, x2) 7→ ((x1 + x2)/2, (x1 − x2)/2), we again
obtain a convex polygon in the l1-plane each of whose edges is parallel to one of the
four vectors (1, 0), (0, 1), (1, 1), (1,−1). If we draw the l1/l∞-coordinate on a 2-face F ,
then we observe that there are two types of edges of F : edges parallel to an l1-axis
and edges parallel to an l∞-axis. Here an l1-axis means a vector (0, 1) or (1, 0), and
an l∞-axis means a vector (1, 1) or (1,−1) by the isometric projection to (R2, l∞) in
Proposition 4.1.

The second one says that if dim Tµ ≤ 2, the metric space (Tµ, l∞) is constructed
by gluing such polygons along the same type of edges; see Figure 4 (a).

Proposition 4.2. Suppose dimTµ ≤ 2. Let F, F ′ be 2-faces of Tµ sharing an
edge e. The edge e is parallel to an l1-axis on F if and only if e is parallel to an l1-axis
on F ′.
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(R2, l1)

(R2, l1)(R2, l1)

(a) (b)

Figure 4. (a) gluing 2-faces and (b) an l1-grid

In the following, we prove the first proposition (Proposition 4.1) by explaining a
basic method to investigate Tµ, which will be often used in the subsequent arguments.
For a point p ∈ Pµ, we define an undirected graph K(p) on S = V K(p) by

(4.2) st ∈ EK(p) def⇐⇒ p(s) + p(t) = µ(s, t) (s, t ∈ S).

Note that a loop appears at s ∈ S exactly when p(s) = 0. The graph K(p) expresses
the information of facets of Pµ which contain p.

Take p∗ in the relative interior of a face F . Suppose that K(p∗) has m bipartite
components with bipartitions {A1, B1}, {A2, B2}, . . . , {Am, Bm}. Then it is easy to see
that the set of vectors {χAi−χBi}m

i=1 is a basis of the vector space {p ∈ RS | p(s)+p(t) =
0 (st ∈ EK(p∗))}. Then every point p in F is uniquely represented as

(4.3) p = p∗ +
m∑

i=1

xi(χAi − χBi)

for (x1, x2, . . . , xm) ∈ Rm. Therefore we have the following.

Proposition 4.3 ([7]). For p ∈ Tµ, let F (p) be the face containing p as its
relative interior. Then we have

(4.4) dim F (p) = the number of bipartite components of K(p),

where loops are regarded as odd cycles.

In the expression (4.3), the map p 7→ (x1, x2 . . . , xm) is an injective isometry from
(F, l∞) to (Rm, l∞) since each χAi − χBi is a 0-1 vector. From this fact, we easily
obtain Proposition 4.1. Indeed, By substituting (4.3) with k = 2 to linear inequalities
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(a) (b)

Figure 5. Orientation

p(s) + p(t) ≥ µ(s, t) (s, t ∈ S), we obtain the linear inequality representation (4.1). In
particular, the isometry is given by the projection RS → R{s,t} for s ∈ A1 ∪ B1, t ∈
A2 ∪ B2.

§ 4.1. l1-grids

Suppose that µ is a rational distance with dim Tµ ≤ 2. By Propositions 4.1 and
4.2, there exists a polyhedral subdivision ∆ of Tµ satisfying the following conditions:

(*1) 2-faces of ∆ consist of squares and isosceles right triangles.

(*2) for each square F ∈ ∆, its edges are parallel to l1-axes of the 2-face containing F ,
and for each triangle F ∈ ∆, its shorter edges are parallel to l1-axes of the 2-face
containing F .

We call a polyhedral subdivision ∆ of Tµ with (*1-2) an l1-grid; see Figure 4 (b). An
edge of ∆ is called an l1-edge if it is not the longer edge of a triangle in ∆. If all l1-edges
of ∆ have the same length α, then we call ∆ α-uniform. A uniform l1-grid always exists
if µ is rational. The graph of l1-edges realizes the l∞-distance on Tµ as follows.

Proposition 4.4. Let ∆ be an l1-grid of Tµ. For two vertices p, q in ∆, there
is a path of length ‖p − q‖∞ between p and q consisting of l1-edges of ∆.

The finite set Z in Theorem 1.2 can be taken to be the vertices of an l1-grid
satisfying a certain orientability condition. An l1-grid ∆ is orientable if edges of ∆ are
oriented so that

(o1) a parallel pair of edges of each square has the same direction, and

(o2) an acute angle of each triangle is a sink or a source.

See Figure 5. Let ∆ be an orientable α-uniform l1-grid ∆ for a rational α. Let Γ be
the graph of l1-edges of ∆. Then we have the following.

Proposition 4.5. There exists an optimal potential ρ in T -dual with ρ(V G) ⊆
V Γ for any capacitated-graph (G, c) with S ⊆ V G
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Tµ

1/2

not orientable

1/4

orientable

Figure 6. Tight span of the 0-1 distance of commodity graph C5

Let Vs = V Γ ∩ Tµ,s be the subset of vertices contained by Tµ,s. Then T -dual is
discretized into the following. This is a general combinatorial dual that yields previously
known multiflow duality relations.

Minimize α
∑

xy∈EG

c(xy)distΓ (ρ(x), ρ(y))(4.5)

subject to ρ : V G → V Γ,

ρ(s) ∈ Vs (s ∈ S).

The proof of Proposition 4.5 is essentially the same as the proof of two-commodity ex-
ample in Section 3.3. We do not repeat it here. Instead, we explain why the orientability
condition is required. Consider the 0-1 distance µ of commodity graph C5 (five cycle).
Then Tµ is a pentagon obtained by gluing five isosceles right triangles along their right
angle. Therefore Tµ has the 1/2-uniform l1-grid ∆ consisting of these five triangles.
Then ∆ is not orientable. If we apply the method used in two-commodity example,
then an orbit of the subdivided l1-grid ∆k goes around the original l1-grid ∆ twice and
the image of ρ′′ does not lies on the vertices of ∆. In this case, ∆2 is a desired ori-
entable 1/4-uniform l1-grid. This method making ∆ orientable by subdivision is called
an orbit splitting [11]; it is a slight modification of the original definition given in [23].
In particular, if an l1-grid exists, then an orientable l1-grid always exists.

§ 4.2. Half-integrality, lattice, and the folder decomposition

If there is an orientable 1/k-uniform l1-grid for a positve integer k, then we can
take an 1/k-integral optimal solution in (2.1) by Proposition 4.4 and the correspondence
ρ 7→ dρ in (2.10).

Theorem 4.6 ([11]). If µ is an integral distance, then there exists an orientable
1/4-uniform l1-grid, and thus there exists a 1/4-integral optimal solution in LP-dual
(2.1) of µ-problem.
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To show the existence of the 1/4-uniform l1-grid is not difficult. This immediately
follows from the fact that the polyhedron Pµ is half-integral if µ is integral. To show
the orientability of this 1/4-uniform l1-grid is not so easy. Here we give a sketch of this
fact for the case of metric µ. We state it in a shaper form. An integral metric µ is
called a cyclically even if µ(x, y) + µ(y, z) + µ(z, x) is even for x, y, z ∈ S. Clearly 2µ is
cyclically even for every integral metric µ.

Theorem 4.7. If µ is a cyclically even metric, then there exists an orientable
1/2-uniform l1-grid.

This theorem is essentially due to Karzanov [23]. His approach is graph-theoretical.
Here we describe a different approach using a lattice (a discrete subgroup) in RS . Let
L be a lattice in RS defined by

(4.6) L = {p ∈ RS | p(s) + p(t) ∈ Z (s, t ∈ S)}.

This lattice is known as the weight lattice of type B in the representation theory of
semisimple Lie algebras. Note that L ⊆ (1/2)ZS and all extreme points of Tµ lie on L.
By cyclically evenness, a simple calculation shows

(4.7) µs − µt ∈ 2L (s, t ∈ S),

where µs is s-th row vector of µ defined by (2.11). So we can define the affine lattice
Aµ by

(4.8) Aµ = µs + 2L.

Consider the graph Γ0 of Aµ by connecting pairs of points in Aµ having unit l∞-distance.
Namely, V Γ0 = Aµ and pq ∈ EΓ0 if ‖p − q‖∞ = 1, or equivalently, p − q ∈ {1,−1}S .
Let Γ be the subgraph of Γ0 induced by Tµ ∩ Aµ. For 2-face F of Tµ, the projection
of F ∩ Aµ to R2 coincides with the intersection of a polygon and a translation of the
lattice

(4.9) {(x1, x2) ∈ Z2 | x1 + x2 ∈ 2Z}.

This immediately follows from (4.3). Figure 7 illustrates Aµ and L with a 2-face. If
all extreme points of Tµ belong to Aµ, then Γ coincides with the graph of the integral
uniform l1-grid of Tµ. However there may exist an extreme point of Tµ not in Aµ as
indicated by the arrow in Figure 7.

Delete edges EΓ from Tµ and consider (the closure of) the connected components.
Then the connected components are classified into the following:

(1) a square formed by a 4-cycle in Γ lying on some 2-face.
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Figure 7. Aµ (•), L (◦), and 2-face

square K2,3-folder K3,3-folder

Figure 8. Folders

(2) a set containing a part of an edge of Tµ parallel to an l∞-axis of some 2-face, which
is obtained by gluing m(≥ 3) isosceles right triangles along the common longer edge
and is the interior of a subgraph K2,m of Γ .

(3) a set containing an extreme point p not belonging to Aµ, which is obtained by
taking join of p and a complete bipartite subgraph Kn,m (n,m ≥ 3) of Γ .

They are called folders. A folder of (1), (2), and (3) is called a square, a K2,m-folder, and
a Kn,m-folder, respectively. See Figure 8 for three types of folders. The decomposition
of Tµ into these folders is called the folder decomposition.

By subdividing each folder and orienting its graph as in Figure 9, we obtain the 1/2-
uniform l1-grid ∆ with orientation. Therefore the 1/2-uniform l1-grid ∆ is orientable.
Thus we have Theorem 4.7. In particular, the vertices of this 1/2-uniform l1-grid ∆ is
given explicitly by the intersection of Tµ and the lattice L. Then the discrete version of
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Figure 9. Subdividing and orienting folders

T -dual (4.5) is also represented as a discrete convex optimization on the lattice L:

Minimize
∑

xy∈EG

c(xy)‖ρ(x) − ρ(y)‖∞(4.10)

subject to ρ : V G → Tµ ∩ L,

ρ(s) ∈ Tµ,s ∩ L (s ∈ S).

This problem resembles an L-convex function minimization in Murota’s theory of dis-
crete convex analysis [27]. It would be interesting to explore such an analogy and
develop discrete convexity theory for multiflows.

§ 4.3. Unbounded fractionality

In Section 4.1, we saw that 2-dimensionality of Tµ brings a combinatorial duality
relation to µ-problem. On the other hand, we cannot expect such a combinatorial duality
relation for the case dim Tµ ≥ 3. Here we explain this fact. Recall that LP-dual (2.1)
to µ-problem is a linear optimization of the polyhedron

(4.11) Pµ,V = {d : metric on V (⊇ S) | d(s, t) ≥ µ(s, t) (s, t ∈ S)} + RV ×V
+ .

Theorem 4.8 ([11]). For an integral distance µ on S, if dimTµ ≥ 3, then there
is no positive integer k such that Pµ,V is 1/k-integral for every V with V ⊇ S.

This follows from the fact that there exists an infinite increasing series of finite
subsets P1 ⊆ P2 ⊆ · · · in (R3, l∞) such that the corresponding metrics are extreme in
the metric cones. The standard TDI argument shows the following corollary.

Corollary 4.9. If dim Tµ ≥ 3, then there is no positive integer k such that µ-
problem has a 1/k-integral optimal multiflow for every integer-capacitated graph (G, c)
with S ⊆ V G.
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§ 5. An application to metric packing

In this section, we describe an application of the folder decomposition of 2-dimensional
tight spans, introduced in Section 4.2, to metric packing problems. The basic idea of
such an approach is due to Chepoi [3]. Extending his approach, we solve Karzanov’s
conjecture concerning metric packing problems for the case where the commodity graph
is vertex-disjoint sum of two triangles.

Let us introduce metric packing problems. Let G,H be undirected graphs with
V H ⊆ V G. H is called a commodity graph. We assume that G is connected. A set of
metrics {µi}m

i=1 on V G is called an H-packing if it satisfies

k∑
i=1

µi(x, y) ≤ distG(x, y) (x, y ∈ V G),(5.1)

k∑
i=1

µi(s, t) = distG(s, t) (st ∈ EH).(5.2)

The existence of an H-packing by special combinatorial metrics is of central interest.
The most simplest metric is a cut metric. A metric µ on V is called a cut metric if there
is X ⊆ V such that

(5.3) µ(x, y) =

{
1 if x 6= y, #({x, y} ∩ X) = 1,

0 otherwise
(x, y ∈ V ).

A classical theorem in the network flow theory, often called the max-potential min-
work theorem, says:

Theorem 5.1 ([30]). If H = K2, then there exists an H-packing by cut metrics.

This is a polar theorem of Ford-Fulkerson’s max-flow min-cut theorem. In fact, a
metric packing problem is known to be polar to a multiflow feasibility problem; see [31,
Section 70.12].

Karzanov extended Theorem 5.1 to the following multiterminal version, which gen-
eralizes Seymour’s two-commodity cut packing theorem [32], and also strengthens Pa-
pernov’s characterization of commodity graphs with the property that the cut condition
is sufficient for the multiflow feasibility [29].

Theorem 5.2 ([18]). If G is bipartite and H is K4, C5 or the union of two
stars, then there exists an H-packing by cut metrics.

If H is none of those graphs in this theorem, then an H-packing by cut metrics
does not exist in general. However, by using some class of metrics beyond cut metrics,
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one can expect further combinatorial metric packing results. To describe it, we need
some notation. For a graph Γ , a metric µ on V is called a Γ -metric if there is a map
φ : V → V Γ such that

(5.4) µ(x, y) = distΓ (φ(x), φ(y)) (x, y ∈ V ).

In particular, a cut metric is just a K2-metric. For a set G of graphs, a G-metric is a
Γ -metric for some Γ ∈ G. Extending Theorem 5.2, Karzanov showed the following.

Theorem 5.3 ([20]). If G is bipartite and H is K5 or the union of a star and
a triangle, then there exists an H-packing by {K2, K2,3}-metrics.

It is known that if H has 3-matching, there is no finite set G of graphs with the
property that every graph G with V H ⊆ V G admits H-packing by proportions of G-
metrics [20, Section 3]. The graphs without 3-matching are classified into the following:

(1) K4, C5, and the union of two stars.

(2) K5 and the union of a star and a triangle.

(3) the vertex-disjoint union of two triangles.

Theorems 5.2 and 5.3 solve the cases (1) and (2), respectively. For the case (3), Karzanov
conjectured that there is an H-packing by {K2,K2,3, 1/2Γ3,3}-metrics, where Γ3,3 is the
graph obtained by subdividing K3,3 and connecting edges between all subdivided points
and newly added one point [20, Section 3]. Namely, Γ3,3 is the graph of the subdivision
of the K3,3-folder in Figure 9. Recently, [12] solved this conjecture in a stronger form.

Theorem 5.4 ([12]). If G is bipartite and H is the vertex-disjoint union of two
triangles, then there exists an H-packing by {K2,K2,3,K3,3, Γ3,3}-metrics.

Note that a K3,3-metric is a submetric of a 1/2 Γ3,3-metric.

§ 5.1. Extremal graphs and geometry of Tµ

Here we sketch a proof of Theorem 5.4 given in [12]. For a metric µ on V , an
extremal graph H of µ is a graph with V H ⊆ V satisfying the following property:

(*) for any distinct x, y ∈ V , there exists st ∈ EH such that

(5.5) µ(s, t) = µ(s, x) + µ(x, y) + µ(y, t).

This means that every pair x, y ∈ V is a part of a shortest path of some s, t ∈ V H.
Metric packing problems in bipartite graphs with commodity graph H are reduced to a
problem of decomposing cyclically even metrics having H as its extremal graph. Recall
that an integral metric µ is called cyclically even if µ(x, y)+µ(y, z)+µ(z, x) is even for
any x, y, z.



TX -Approaches to Multiflows and Metrics 19

Lemma 5.5. Let H be a graph. Let G be a finite set of graphs. If any cyclically
even metric µ having H as an extremal graph is decomposed into an integral sum of
G-metrics, then every bipartite graph G with commodity graph H admits an H-packing
by G-metrics.

For a proof of this fact, see [20, pp. 476–477]. Therefore, it suffices to consider the
decomposition property of cyclically even metrics having H as its extremal graph. The
following proposition connects extremal graph H and geometry of Tµ.

Proposition 5.6. If an extremal graph H of a metric µ has no k-matching.
then the dimension of Tµ is at most k − 1.

Proof. Suppose that dimTµ ≥ k. By Proposition 4.3, there is p ∈ Tµ such that
K(p) has k bipartite components. We show that each bipartite component has at least
one edge of H. Take an edge xy from a bipartite component of K(p). Then, by definition
of K(p), we have

(5.6) p(x) + p(y) = µ(x, y).

For some s, t ∈ V H, we have

µ(s, t) ≤ p(s) + p(t) = p(s) − p(x) + p(x) + p(y) − p(y) + p(s)

≤ µ(s, x) + µ(x, y) + µ(y, t) = µ(s, t),

where we use Lemma 2.3 (4) in the second inequality. This implies st ∈ EK(p), and
similarly sy, xt ∈ EK(p).

Therefore, if H has no 3-matching, then Tµ is 2-dimensional, and thus we can apply
the folder decomposition of 2-dimensional tight spans, introduced in Section 4.2. Let Γ

be the graph of Tµ∩Aµ. By Lemma 2.3 and (a slight modification of) Proposition 4.4, µ

is a submetric of distΓ . We decompose distΓ by using orbits as in Section 3.3. A pair of
edges e, e′ of Γ is called projective if there is a sequence of edges e = e1, e2, . . . , em = e′

such that ei and ei+1 are edges of some folder of type (2) or (3), or are parallel edges of
a folder of type (1). The projectivity is an equivalence relation on EΓ . An equivalence
class is called an orbit. Let O be the set of all orbits of Γ . For an orbit o ∈ O, the
orbit graph Γ o is the graph obtained from Γ by contracting edges EΓ \ o and deleting
parallel edges appeared. This construction naturally gives a map φo : V Γ → V Γ o by
defining φo(p) to be the contracted point. Then the following formula holds:

(5.7) distΓ (p, q) =
∑
o∈O

distΓ o(φo(p), φo(q)) (p, q ∈ V Γ ).
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This is a special case of the decomposition of a modular graph by Bandelt [1] or the
canonical metric representation of a bipartite graph by Lomonosov and Sebö [25]; also
see [6, Section 20.1]. Therefore, it suffices to determine orbit graphs of Γ . By analyzing
Tµ, one can show the following.

Lemma 5.7 ([12]). If an extremal graph H of a cyclically even metric µ is the
vertex-disjoint sum of two triangles, then an orbit graph of Γ is K2, K2,3, K3,3, or an
isometric subgraph of Γ3,3.

Thus we obtain Theorem 5.4.

§ 6. Concluding remarks

In this paper, we explained a unified approach to multiflow problems by using
tight spans. We think that the potential of such a TX -approach has not yet been fully
exploited. Finally, we explain further related topics, future research directions, and
open questions.

Minimum 0-extensions and minimizable graphs Here we explain a relationship
between tight spans and minimum 0-extension problems discovered by Karzanov [22].
For an undirected graph G with nonnegative capacity c ∈ REG

+ and an undirected graph
Γ with V Γ ⊆ V , the minimum 0-extension problem is:

Minimize
∑

xy∈EG

c(xy)distΓ (ρ(x), ρ(y))(6.1)

subject to ρ : V G → V Γ,

ρ(s) = s (s ∈ V Γ ).

This problem is NP-hard since it contains the 3-terminal cut problem for Γ = K3.
Karzanov considered the following relaxation problem:

Minimize
∑

xy∈EG

c(xy)d(x, y)(6.2)

subject to d: metric on V G,

d(s, t) = distΓ (s, t) (s, t ∈ V Γ ).

Γ is said to be minimizable if (6.1) and (6.2) have the same optimal value for every
capacitated graph (G, c) with V Γ ⊆ V G. Karzanov gave an elegant characterization of
minimizable graphs as follows.

Theorem 6.1 ([22]). Γ is minimizable if and only if Γ is bipartite, has no iso-
metric cycles of length k ≥ 6, and orientable.
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Here a graph Γ is orientable if Γ can be oriented so that the orientations of edges
pq and rs in every 4-cycle (p, q, r, s) are opposite along the cycle as in Figure 5 (a).
A bipartite graph without isometric cycles of length k ≥ 6 is just a hereditary mod-
ular graph [2]. Orbits and related concepts that we used for l1-grids were originally
introduced for a class of modular graphs [22, 23].

A relation to our approach using l1-grids is explained as follows. The relaxation
(6.2) is the LP-dual to the µ-problem for µ = distΓ ; the equality of the constraint of
(2.1) is attained since µ = distΓ is a metric. Then Γ necessarily coincides with the graph
of an orientable l1-grid of Tµ, and (4.5) coincides with (6.1). Thus, TdistΓ

is obtained by
filling l1-space to each 4-cycle in Γ as in Figure 8 [22, 23]. Conversely, the graph Γ of an
orientable l1-grid of Tµ for a (possibly nonmetric) distance µ is necessarily minimizable.
However we do not know a complete graph-theoretical characterization of the graph Γ

together with Vs(s ∈ S) arisen in (4.5). We leave it a future research topic.

Fractionality of optimal multiflows. In Section 4, we gave a general combinatorial
min-max relation to µ-problems for a distance µ with dimTµ ≤ 2. However, it is not
a fully combinatorial min-max relation, since it says nothing about the existence of
integral, half-integral, quarter-integral, or 1/k-integral optimal multiflows for a fixed
positive integer k. As seen in Section 4.3, we cannot expect that µ-problems for a
distance µ with dimTµ ≥ 3 have such a combinatorial min-max relation.

For 0-1 distance case, Karzanov conjectured:

Conjecture 6.2 ([21]). If commodity graph H having no isolated vertices satis-
fies the following condition:

(P) for every intersecting triple of maximal stable sets A,B,C, we have A∩B = B∩C =
C ∩ A,

then there exists a positive integer k such that the maximum multiflow problem with
respect to H for any integer-capacitated graph (G, c) with V H ⊆ V G has a 1/k-integral
optimal multiflow.

Karzanov [19] showed that the condition (P) is a necessary condition for the ex-
istence of such a positive integer k, and gave a combinatorial min-max relation in this
case. In fact, (P) is equivalent to the condition of the 2-dimensionality of the tight
span of the 0-1 distance corresponding to H. A detailed description of Tµ for a 0-1
distance with the property (P) is given by [11], and a combinatorial min-max relation
from (4.5) coincides with Karzanov’s one. Therefore, the following conjecture extending
the previous one might be reasonable.

Conjecture 6.3. For a distance µ on S, if dimTµ ≤ 2, then there exists a



22 Hiroshi Hirai

positive integer k such that µ-problem for any integer-capacitated graph (G, c) with S ⊆
V G has a 1/k-integral optimal multiflow.

Directed multiflows and tropical polytopes. It is natural to ask whether a
geometric dual similar to T -dual exists for µ-problems on digraphs. The forthcoming
paper [13] joint with S. Koichi answers this question; a part of this work appeared in
his Ph.D. thesis [24]. For not necessarily symmetric distance µ : S × S → R+, consider
the following polyhedral sets:

Pµ = {(p, q) ∈ RS×S | p(s) + q(t) ≥ µ(s, t) (s, t ∈ S)},(6.3)

Tµ = the set of minimal elements of (Pµ ∩ RS×S
+ ).(6.4)

Then Tµ plays the same role of tight spans. Furthermore, when we restrict µ-problems
on Eulerian digraphs, the following subset Tµ of Tµ

(6.5) Tµ = RS×S
+ ∩ {the set of minimal elements of Pµ}

gives sharper duality relations including Frank’s directed version of free multiflow the-
orem [9] and Ibaraki-Karzanov-Nagamochi’s directed version of the multiflow locking
theorem [15]. Interestingly, Tµ coincides with the intersection of the nonnegative or-
thant and a tropical polytope introduced by Sturmfels and Develin [5]. Then the dual of
µ-problem for an Eulerian digraph is reduced to a certain location problem on a tropical
polytope.
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