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CAT(0) complexes appear In
some combinatorial optimization problems:

1. Multicommodity flow ~~ folder complex

2. Multifaclility location ~~ orthoscheme complex

But | don't know the reason of these appearances::-



N = (V, E, ¢, s,t): undirected network
c. E — Z+: edge-capacity
s,t € V: terminal pair

Def: (s,1)-flow
& T { (s,t)-paths } — R+,
2{f(P) |P:einP}=c(e) (einE)




N = (V, E, ¢, s,t): undirected network
c. E — Z+: edge-capacity
s,t € V: terminal pair

Def: (s,1)-flow
& T { (s,t)-paths } — R+,
2{f(P) |P:einP}=c(e) (einE)




Maximum flow problem

Maximize 2 f(P) over (s,t)-flows f
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Maximize 2 f(P) over (s,t)-flows f




Def: (s,t)-cut
<=>XcV:sinX.,tnotin X

Cut capacity c(X) .= 2{c(xy) | xIn X,y notin X}
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Minimum cut problem

Minimize c(X) over all (s,t)-cuts X
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Max-Flow Min-Cut Theorem
(Ford-Fulkerson 506)

Max 2. 1(P) = Min c(X)

f: (s,t)-flow X: (s,1)-cut

Integer-valued max-flow (integrality)

Polynomial time algorithm for max-flow/min-cut



Multicommodity flow
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Multicommodity flow




- Many practical applications: trafic, internet,
communication networks, ---

- One of prominent research areas in TCS &
combinatorial optimization

- Many problem tformulations

. Various extensions of MFMC to multiflows



N = (V, E, ¢, S): undirected network
c.:E — Z+
S c V: terminal set
Def: multiflow
& f: { S-paths } = R+,
2 {f(P) | P:einP}=c(e) (e inkE)




Our multiflow problem

w: { terminal pairs } = Z+

Maximize 2 u(st) f(P) over all multiflows f
s,t, (s,t)-path P

value: u (st) f(P)
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MMP[ ]
Maximize 2 u(st) f(P) over all multiflows f
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MMP[ ]
Maximize 2 u(st) f(P) over all multiflows f

Thm [H. 09-14, build on works of Karzanov, Chepoi,--]
MFMC-type formula holds in MMP[ ]

A

1 “embeds” into a folder complex
(= CAT(0)B2-complex)
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"MFMC-type formula holds in MMP[u]”

means

3 k, 1/k-Integer max-flow
for every instance of MMP[ u]

Max 2 wu(st) T(P) = Min 3k 3k %k >k

Optimization over
“‘combinatorial objects”
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CAT(0) space

~ geodesic metric space such that
every geodesic triangle is “thin”
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t diy,z) =lly -7 |

dixy) =l x -yl
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d(zx) =1z - x|



Folder

Folder complex
= CAT(0) complex obtained by gluing folders
~ simply connected & without corner of cube
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" embeds into a folder complex”
Mmeans

d K. folder complex,
d{ Fs:sIn S }. convex sub-complexes
with longer boundary edges

such that
u(st) = D(Fs, Ft) (s,tIn S)

D: {1-length metric on K
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Thm: [H. SIDMAT 1]
K, { Fs }: embedding of u

Max 2 u(st) T(P)

= Min X c(xy) D(p(x), p(y))
s.t. p:V— V(K),
p(s) In Fs (s In S)
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Thm: [H. SIDMAT 1]
K, { Fs }: embedding of u

| potential
Max 2 u(st) T(P) difference

.
= Min Z c(xy) D(p(x), p(y))

st. p:V — V(K),

' node potential7 p(s) In Fs (s in )
A

[ boundary condition ]
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FS'f‘ Ft U 1
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\ Max > u (st) f(P)

t Min 2 c(xy) D(p(x), p(y))
s.t. p:V — V(K),
o(s) In Fs (s In S)
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Max 2 u(st) T(P)

Min2 c(xy) D(p(x), p(y))
s.t. p:V — V(K),
p(s) In Fs (sin S)
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Max 2 u(st) T(P) =

Min = c(xy) D(p(x), p(y))
st p:V — V(K),
o(s) In Fs (s In S)
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Max 2 u(st) f(P) =

Min = c(xy) D(p(x), p(y))
t st p:V — V(K),
o(s) In Fs (s In S)
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s t u s %1
s [ 1 1
t] 1 1
u ul 1 1
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Max 2 u(st) T(P) =

Min = c(xy) D(p(x), p(y))
st p:V — V(K),
o(s) In Fs (s In S)
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Thm [H. STOC10, MOR14]
1 embeds into a folder complex

= d 1/24-integral max-flow

Thm [H. JCTB09, SIDMAT1]
Otherwise, no k:1/k-integral max-flow
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Thm [H. STOC10, MOR14]
1 embeds into a folder complex

= d 1/24-integral max-flow

Thm [H. JCTB09, SIDMAT1]
Otherwise, no k:1/k-integral max-flow

Proof tools: linear programming duality + «

LP-dual = LP over (semi)metrics on V
(Onaga-Kakusho, Iri 71),

Tight span (Isbell 64, Dress 84)

Splitting-off technique, ---
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Multifacility Location Problem
G: graph (city), d: path-metric

We are going to locate n facilities on V(G)
such that the communication cost is minimum.

2 b(iv) d(p(i), v) + 2c(ij) d(p(i),p())

cost between
facilities and places

cost between facilities

p(i): location of facility |
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Formulated

Recent app
IN machine

in 70’s

-Xxtending minimum-cut problem

ications: Labeling tasks

earning, computer vision, ---

»x

Min. 2 b d(y(1), x(1)) + 2c d(x(1),x())

S.1.

I,J.adjacent

x(1) In { white, black} (I: pixel)
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Multifac[G]:

min. 2 b(iv) d(p(i), ) + ZC(U) d(p(i),p())
st p()in V(G) (i=1,2,-,n)

BW RGB RGB+1
Gray Scale
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Multifac[G]:
min. 2 b(iv) d(p(i), ) + ZC(U) d(p(1),p())

st p()in V(G) (i=1,2,-,n)
. NP-hard

6 ¥ AN A
3\W RGB RGB+1

Gray Scale
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What is G for which Multifac[G] iIsIn P 7
(Karzanov 98)

tree
Picard-Ratliff 78

niag

Median graph
Chepoi 96

-

Frame
Karzanov 98

Ko
Ford-Fulkerson 56

28



What is G for which Multifac[G] iIsIn P 7
(Karzanov 98)

1-skeleton of “1-skeleton” of
CAT(0) cube complex “oriented” folder complex

aad S

Median graph Frame
Chepoi 96 Karzanov 98

tree
Picard-Ratliff 78

Ko
Ford-Fulkerson 56

Multifac[G]

= dual of multiflow
/
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A dichotomy

hm [H. SODA13, MPA to appear]
If G Is orientable modular, then Multifac[G] Is In P.

Thm [Karzanov 98]
Otherwise Multifac[G] is NP-harad.
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Def: G 1s modular
& every triple of vertices has a median

median u of X,y,z:

& d(x,y) = d(x,u) + d(u,y),
d(y,z) = d(y,u) + d(u,z),
d(z,x) = d(z,u) + d(u,x)

Def: G Is orientable
& 4 orientation such that .

V 4-cycle is oriented as I I
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Orientable modular graph

EX: tree, cube, grid graph, modular lattice,
median graph, their products and “gluing”
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Orientable modular graph

EX: tree, cube, grid graph, modular lattice,
median graph, their products and “gluing”
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Proof tools:

attice theory, metric graph theory ( Bandelt-Chepoi )
discrete convex analysis ( Murota ),

valued CSP ( Thapper-Zivny ),

My intuition behind the proof:
View Multifac[G] as an optimization over
a complex associated with om-graph G x G x --- x G
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G: om-graph

/ﬁ/‘ SN
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(1,1,1)

O >

.7 (1.1,0)

K(G): complex obtained by filling
to each maximal chain of <o,o‘;6> 00
a cube subgraph (= Boolean lattice)
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G: om-graph

7

(1,1,1)

K(G): complex obtained by filling
to each maximal chain of (O,O*b; 00
a cube subgraph (= Boolean lattice)
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Orthoscheme complex (Brady-McCammond10)

P: graded poset
K(P): = complex obtained by filling

x3=(1,1,1)

[ 7 x2=(1,1,0)

»
L

x0=(0.0.0) _ x1=(1.0.0)

to each maximal chain xO < x1 < + + * < xk
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K(P) ~ folder

OT1

O10

000 K(P) ~ 3-cube

BM are interested with P such that K(P) is CAT(O)
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Thm [Chalopin, Chepoi, H, Osajda 14; conjecture of BM10]
P: modular lattice — K(P) is CAT(0).

Om-graph G is a gluing of modular lattices.
K(G) i1s a gluing of K(P) for modular lattices P.
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Conj [CCHOT14]
G: om-graph — K(G) is CAT(O)

G: median graph
— K(G) subdivides CAT(0) cube complex

G: frame — K(G) = folder complex

G: om-graph from Euclidean building A of type C

— K(G) = the standard metrization of A
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| proved at August 2015
Conj [CCHO 14]

G: om-graph — K(G) is CAT(O)

G: median graph
— K(G) subdivides CAT(0) cube complex

G: frame — K(G) = folder complex

G: om-graph from Euclidean building A of type C

— K(G) = the standard metrization of A
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Concluding remarks

?
-Nonpositive curvature property ~~

tractability iIn combinatorial optimization

-Convex optimization over CAT(0) space:
-Phylogenetic distance In tree space [Owen, Bacak, - ]
-Dual of min-cost free multiflow problem
= convex optimization over product of stars
—> efficient combinatorial algorithm [H.14]
-Dual of max. node-cap. free multiflow problem
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Maximum node-capacitated free multiflow problem
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Maximum node-capacitated free multiflow problem




Maximum node-capacitated free multiflow problem
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Max total flow value

()
2
3/2 ¢
10

= Min  g(p)

over p €

—> discrete
convex optimization
on Euclidean building
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Max total flow value

9—

over p €

—> discrete "';\(

- > <
e’

1 1/2 ¢
convex optimization 10 " )
on Euclidean building |\ ?

the first combinatorial strongly polynomial time a
[H.

—>
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= Min g(p) / | 4{;\,”: \
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Thank you for your attention |

My papers are available at

http://www.misojiro.t.u-tokyo.ac.jp/~hirai/
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